
Ques%on: Can you describe a complex project where you led the technical strategy and
architecture?
Answer:
At 1010data, I led a project to design and implement a HIPAA-compliant FHIR integra;on with
Walgreens’ HAPI FHIR server. The goal was to enable secure inges;on, transforma;on, and
analysis of healthcare data while ensuring compliance with HIPAA regula;ons. This integra;on
was cri;cal for leveraging healthcare data to generate ac;onable insights for pa;ent care
op;miza;on.

Scope and Challenges:

The project posed several challenges:

1. Compliance and Security: Mee;ng stringent HIPAA requirements for data security and
privacy.

2. FHIR Standards and SMART: Working with the FHIR (Fast Healthcare Interoperability
Resources) standard and implemen;ng SMART on FHIR protocols for secure and
standardized data exchange.

3. Schema Synchroniza%on: Ensuring our data schema mirrored Walgreens’ HAPI FHIR
server schema for seamless integra;on and data integrity.

4. Scalability: Designing a robust architecture capable of handling large volumes of
healthcare data efficiently.

5. Team Coordina%on: Managing and guiding a team of four engineers with diverse
technical skill sets.

Technical Strategy:

1. Requirements Analysis and Planning:

The project began with comprehensive requirements gathering. I reviewed Walgreens’ HAPI
FHIR server specifica;ons, focusing on resources such as Pa;ent, Observa;on, and Encounter.
These were mapped to our internal analy;cal needs.
I collaborated with Walgreens to understand their schema structure, SMART on FHIR
capabili;es, and token-based authen;ca;on requirements. This ensured alignment on data
exchange protocols and security.

2. Architecture Design:

The system was designed to meet these challenges with a mul;-layered approach:

1. SMART on FHIR Implementa%on:

◦ Leveraged the SMART on FHIR protocol to enable secure authen;ca;on using
OAuth 2.0.

◦ Built a Java-based client to securely fetch data from Walgreens’ HAPI FHIR server
using SMART tokens.

2. Schema Synchroniza%on:

◦ Established a schema mirroring process to synchronize our internal database
schema with Walgreens' HAPI FHIR schema.

◦ This was achieved by dynamically fetching FHIR resource defini;ons and
genera;ng corresponding database tables in PostgreSQL using a combina;on of
Java and Python tools.

3. Data Inges%on Pipeline:

◦ U;lized AWS Glue for schema discovery and transforma;on.
◦ Implemented an inges;on pipeline using AWS Lambda for real-;me processing

and Amazon S3 for raw data storage.
4. Valida%on and Transforma%on:

◦ Developed valida;on layers using the HAPI FHIR library to ensure incoming FHIR
data conformed to the standard.

◦ Data transforma;ons were performed in Python using Pandas to adapt the FHIR
structure for analy;cal purposes.

5. Scalability and Storage:

◦ AWS RDS (PostgreSQL) served as the primary data store for structured and
transformed data.

◦ To ensure scalability and fault tolerance, we leveraged AWS SQS to decouple
inges;on and processing, enabling retries for failed messages.

6. HIPAA Compliance:

◦ All sensi;ve data was encrypted at rest using AWS KMS and in transit using TLS
1.2.

◦ Ac;vity logs were centralized using AWS CloudTrail and monitored for suspicious
access pa[erns.

7. Analy%cs and Repor%ng:

◦ Used AWS RedshiT for high-performance analy;cs and integrated Tableau for
visualiza;on.

◦ Developed custom reports for iden;fying trends such as medica;on adherence
and pa;ent outreach effec;veness.

Execu%on and Leadership:

1. Team Coordina%on:

I divided the project into clear deliverables: inges;on, schema synchroniza;on, valida;on,
analy;cs, and compliance. Each module was assigned to a team member based on exper;se. I
conducted regular standups to ensure alignment and progress.

2. Agile and Itera%ve Development:

The project followed an Agile methodology with bi-weekly sprints. I worked closely with the
team to review progress, resolve blockers, and refine designs itera;vely.

3. Risk Mi%ga%on:

Key risks included schema changes from Walgreens’ side and API performance issues. To
address this:

• I implemented dynamic schema synchroniza;on scripts to adapt to changes in the HAPI
FHIR schema.

• The team performed extensive load tes;ng on the inges;on pipeline, using AWS X-Ray
for debugging bo[lenecks.

Outcome:

1. Successful Integra%on:
The system securely connected to Walgreens’ HAPI FHIR server using SMART on FHIR,
achieving seamless data inges;on and schema synchroniza;on.

2. Compliance Achieved:
The architecture passed external audits, fully mee;ng HIPAA requirements.

3. Scalability and Performance:
The system handled millions of records daily with sub-second response ;mes for API
interac;ons. The decoupled architecture ensured minimal down;me.

4. Business Impact:
The analy;cs pipeline enabled Walgreens to uncover valuable insights such as
iden;fying high-risk pa;ents and improving medica;on adherence.

5. Founda%on for Future Growth:
The project established a reusable HIPAA-compliant FHIR integra;on framework,
accelera;ng future integra;ons with other healthcare partners.

Reflec%on:

This project showcased my ability to lead a technically and logis;cally complex ini;a;ve. By
leveraging SMART on FHIR, schema synchroniza;on, and AWS services effec;vely, I delivered a
solu;on that addressed business needs while maintaining compliance and scalability. The
experience reinforced the importance of combining technical exper;se with strategic vision and
cross-team collabora;on.

Ques%on: How do you approach ensuring technical excellence and mi%ga%ng risks in your
projects?

Answer:
Ensuring technical excellence and mi;ga;ng risks requires a combina;on of strategic planning,
adherence to best prac;ces, leveraging the right tools and technologies, and fostering a culture
of con;nuous improvement. In my roles at both Legend Energy Advisors and 1010data, I
implemented frameworks and processes that consistently delivered robust, scalable, and high-
quality solu;ons while proac;vely addressing poten;al risks.

1. Defining Clear Goals and Requirements

The first step is establishing a shared understanding of project goals and requirements:

• At Legend Energy Advisors, we focused on building a SaaS pla^orm for u;lity
consump;on op;miza;on. I collaborated with stakeholders to define func;onal
requirements, performance benchmarks, and regulatory compliance standards, such as
ENERGY STAR and LEED guidelines.

• At 1010data, while designing a HIPAA-compliant FHIR integra;on with Walgreens, we
ensured requirements were deeply aligned with healthcare data privacy regula;ons and
the FHIR schema.

This clarity helped create a roadmap with measurable deliverables, reducing ambigui;es and
misunderstandings that could lead to project delays or misaligned expecta;ons.

2. Architectural Excellence and Technology Choices

Architectural decisions set the founda;on for technical excellence:

• At Legend Energy Advisors, I designed a highly modular system architecture using
Python, Flask, and PostgreSQL, which enabled seamless integra;on with IoT devices and
third-party APIs for real-;me u;lity data inges;on and analysis.

• At 1010data, I implemented a HIPAA-compliant architecture using a combina;on of Java,
AWS services, and the HAPI FHIR server. The system incorporated schema
synchroniza%on with Walgreens’ FHIR schema to ensure data consistency.

Key prac;ces include:

1. Scalability: Leveraging cloud-na;ve services such as AWS Lambda, S3, and RDS to
support growth while keeping infrastructure efficient.

2. Resilience: Implemen;ng decoupled, event-driven architectures with tools like
RabbitMQ and AWS SQS to ensure fault tolerance.

3. Code Quality: Establishing code review processes, automated tes;ng pipelines, and
sta;c analysis tools to maintain high standards.

3. Risk Iden%fica%on and Mi%ga%on

Risk management is integral to every stage of the project lifecycle:

Proac%ve Risk Iden%fica%on

• At Legend Energy Advisors, we iden;fied risks such as inconsistent IoT data formats
from different u;li;es and the poten;al for API thro[ling by third-party providers.

• At 1010data, the primary risks included schema changes from Walgreens’ HAPI FHIR
server, data privacy breaches, and integra;on failures.

Mi%ga%on Strategies

1. Automated Tes%ng Frameworks:

◦ Developed robust test suites with unit, integra;on, and end-to-end tests. At
Legend Energy Advisors, Python-based tes;ng frameworks (e.g., pytest) ensured
accurate handling of u;lity data anomalies.

◦ At 1010data, Java-based test cases validated FHIR data integrity and schema
compa;bility.

2. Monitoring and Aler%ng:

◦ Integrated Grafana and Datadog for real-;me performance monitoring and
anomaly detec;on in both pla^orms.

◦ For compliance risks at 1010data, AWS CloudTrail logs and encryp;on (via AWS
KMS) were monitored for unauthorized data access.

3. Dynamic Schema Synchroniza%on:

◦ At 1010data, I built a schema synchroniza;on mechanism that dynamically
adapted our internal database schema to reflect Walgreens’ FHIR schema
changes, preven;ng integra;on breakdowns.

4. Proof of Concepts and Pilots:

◦ At Legend Energy Advisors, a pilot program tested data pipelines with a subset of
IoT devices, minimizing deployment risks.

◦ At 1010data, I led proof-of-concept integra;ons with Walgreens to validate the
SMART on FHIR protocol implementa;on.

4. Con%nuous Improvement and Itera%on

Technical excellence is an ongoing process:

• Code Reviews and Standards: Both projects adhered to strict code review guidelines,
promo;ng knowledge sharing and improving quality. I championed the use of tools like
SonarQube to enforce coding standards and detect vulnerabili;es.

• CI/CD Pipelines:
◦ At Legend Energy Advisors, I implemented CI/CD pipelines using Jenkins and

GitLab CI for automated deployments.
◦ At 1010data, these pipelines were extended to include compliance checks,

automated FHIR schema valida;on, and integra;on tests.

5. Fostering Team Collabora%on and Excellence

A strong team is cri;cal to achieving technical excellence:

• At Legend Energy Advisors, I conducted regular knowledge-sharing sessions to keep the
team updated on advancements in IoT, machine learning, and energy analy;cs.

• At 1010data, I led training on FHIR standards, AWS best prac;ces, and the HAPI FHIR
library, ensuring the team was well-equipped to handle complex challenges.

6. Business Impact and Success Metrics

Both projects exemplified the results of priori;zing technical excellence and risk mi;ga;on:

• At Legend Energy Advisors, the SaaS pla^orm improved u;lity consump;on insights for
enterprise clients, leading to a 20% average reduc;on in energy costs. The system was
robust enough to onboard new clients with minimal configura;on due to its modular
architecture.

• At 1010data, the FHIR integra;on enabled Walgreens to derive ac;onable insights from
pa;ent data securely and efficiently. The system maintained 99.9% up;me while
mee;ng HIPAA and FHIR compliance standards, establishing a scalable founda;on for
future healthcare integra;ons.

Reflec%on

Ensuring technical excellence and mi;ga;ng risks is a mul;faceted effort that combines
forward-thinking design, stringent quality controls, and a proac;ve approach to addressing
uncertain;es. My experience across these projects has shown that success lies in strategic

foresight, technical rigor, and fostering a collabora;ve culture focused on con;nuous
improvement.

Ques%on: Can you provide an example of how you've refined team processes to improve efficiency
and outcomes?

Answer:
Refining team processes for efficiency and outcomes requires a structured approach to iden;fying
inefficiencies, understanding team needs, and aligning workflows with organiza;onal goals. At both
Legend Energy Advisors and 1010data, I implemented targeted process improvements that leveraged
automa;on, collabora;on, and technical excellence to deliver impac^ul results.

1. Understanding Challenges and Aligning Objec%ves

• At Legend Energy Advisors, a key challenge was ensuring compliance with EPA regula%ons for
energy data repor;ng and analysis, while managing terabytes of IoT and u;lity data daily. The
lack of centralized observability made it difficult to monitor system health, respond to incidents
efficiently, and streamline energy analy;cs pipelines.

• At 1010data, the complexity stemmed from designing a HIPAA-compliant FHIR integra%on with
Walgreens' HAPI FHIR server. Misaligned workflows during schema synchroniza;on and tes;ng
cycles led to delays and inefficiencies in delivering cri;cal features.

2. Process Refinements at Legend Energy Advisors

To address these challenges, I implemented several strategic refinements, including the development of
an observability plagorm and enhancements to the data inges;on pipeline:

a. Building an Internal Observability Plagorm

I designed and implemented a centralized observability plagorm to monitor and manage our systems
effec;vely:

• Core Capabili%es: Log aggrega;on, health checks, tracing, run;me data visualiza;on, incident
monitoring, and automated ac;on sugges;ons for specific system events.

• Architecture & Tech Stack:
◦ Backend: Built with Go, using the CQRS paiern and Event Sourcing for high efficiency

and consistency.
◦ Frontend: Developed with Angular and D3.js to provide intui;ve visualiza;ons for logs,

metrics, and system health.
◦ Log Management: Used Kaja for streaming logs, Logstash for log aggrega;on, and

Elas%csearch for log storage.
◦ Deployment: Deployed on AWS, leveraging EC2, Elas%c Load Balancer (ELB), S3 for data

storage, and CloudWatch for addi;onal monitoring, with on-prem servers integrated
into a Proxmox Debian cluster.

◦ CI/CD: Built and automated a Terraform/Ansible CI/CD pipeline for consistent
deployments.

b. Integra%ng EPA Regula%ons into Processes

• Established automated workflows for data inges;on and repor;ng to ensure compliance with
EPA Energy STAR and LEED cer%fica%on standards.

• Implemented data valida%on rules in the preprocessing pipeline to standardize u;lity and IoT
data formats and ensure accuracy in energy efficiency metrics.

c. Streamlining Data Pipelines

• Modularized the pipeline into inges%on, transforma%on, and analy%cs components, enabling
the team to work independently on each part.

• Enhanced observability for these pipelines by integra;ng logs and metrics into the observability
pla^orm, allowing real-;me monitoring and faster incident response.

Outcomes

• Reduced system down;me by 40% through proac;ve monitoring and faster incident resolu;on.
• Improved compliance with EPA repor;ng standards, resul;ng in faster cer;fica;ons for clients.
• Enhanced team efficiency by centralizing observability and automa;ng rou;ne tasks, enabling a

20% improvement in overall throughput.

3. Process Refinements at 1010data

For the FHIR integra%on project with Walgreens, I focused on refining collabora;on workflows and
automa;ng repe;;ve tasks to align with HIPAA compliance requirements:

a. Schema Synchroniza%on and Data Consistency

• Implemented an automated schema synchroniza%on process to mirror Walgreens’ HAPI FHIR
server schema. This reduced manual schema update efforts and ensured seamless integra;on.

• Developed valida;on tools in Java to detect schema discrepancies early, minimizing delays
during tes;ng and deployment.

b. Collabora%ve Workflows

• Introduced daily standups and sprint planning sessions to improve team communica;on and
priori;ze cri;cal tasks.

• Encouraged peer programming for FHIR resource mapping, leveraging collec;ve exper;se to
improve code quality.

c. Automa%on and Monitoring

• Enhanced CI/CD pipelines with FHIR schema valida%on and automated unit tes;ng, reducing QA
cycles.

• Integrated AWS CloudWatch and Datadog for real-;me monitoring of data pipelines, enabling
the team to address poten;al issues proac;vely.

Outcomes

• Reduced schema update cycle ;mes from 2 weeks to 3 days, accelera;ng feature delivery and
improving integra;on ;melines.

• Improved collabora;on and tes;ng processes, leading to a 15% decrease in produc%on defect
rates.

4. Fostering Con%nuous Improvement

In both roles, I priori;zed fostering a culture of con;nuous improvement:

• Training and Enablement: Conducted training sessions on tools like HAPI FHIR, AWS services,
and observability best prac;ces, empowering team members to enhance their skills.

• Retrospec%ves: Hosted sprint retrospec;ves to encourage open feedback and iden;fy process
gaps for itera;ve refinement.

5. Business and Technical Impact

These refinements resulted in tangible business and technical outcomes:

• At Legend Energy Advisors, the observability pla^orm reduced incident resolu;on ;mes and
improved overall system reliability, ensuring be[er service delivery to clients.

• At 1010data, the streamlined FHIR integra;on supported Walgreens’ data analysis needs,
enabling HIPAA-compliant insights while maintaining high delivery standards.

Reflec%on

My approach to refining team processes emphasizes automa;on, collabora;on, and alignment with
business objec;ves. By building tools like the observability pla^orm at Legend Energy Advisors and
implemen;ng process op;miza;ons at 1010data, I’ve demonstrated a commitment to technical
excellence and efficiency, delivering impac^ul results for both teams and the organiza;ons.

Ques%on: How have you brought innova%ve thinking into your previous roles, and
what was the outcome?

Answer:
Bringing innova;ve thinking into my roles has always been a cornerstone of my approach to problem-
solving. Whether it was designing scalable solu;ons, leveraging emerging technologies, or challenging
exis;ng processes, I’ve consistently sought opportuni;es to introduce impac^ul innova;ons. Below, I’ll
share examples from my work at Legend Energy Advisors and 1010data, demonstra;ng how innova;on
drove measurable outcomes.

1. Understanding Challenges and Iden%fying Opportuni%es for Innova%on

• At Legend Energy Advisors, the challenge was to streamline the management of large-scale IoT
and u;lity data while ensuring compliance with EPA regula%ons for energy repor;ng. The
exis;ng systems lacked the observability, scalability, and automa;on necessary to support the
company’s growth and compliance requirements.

• At 1010data, my team needed to design a HIPAA-compliant FHIR integra%on with Walgreens’
HAPI FHIR server for seamless inges;on and analysis of healthcare data. The project presented

unique challenges in handling complex schema synchroniza;on, ensuring data integrity, and
maintaining scalability under strict compliance guidelines.

2. Innova%on at Legend Energy Advisors

a. Building a Centralized Observability Plagorm

I developed an internal observability plagorm to address inefficiencies in monitoring and incident
response:

• Core Innova%ons:
◦ Log Streaming: Leveraged Kaja for real-;me log streaming and Logstash for

aggrega;on.
◦ Advanced Architecture: Used CQRS and Event Sourcing to enable high-performance log

processing and maintain consistency across the pla^orm.
◦ Interac%ve Visualiza%ons: Designed an intui;ve frontend with Angular and D3.js for

displaying run;me metrics, health checks, and system ac;vity trends.
◦ Automated Incident Analysis: Incorporated automated ac;on recommenda;ons based

on historical incident data.
b. Outcome

• Reduced incident resolu;on ;mes by 40%, significantly improving system reliability.
• Enabled real-;me EPA compliance monitoring for energy data pipelines, ensuring accurate

repor;ng and faster cer;fica;on approvals.
• Streamlined the analysis of terabytes of daily data across AWS EC2 instances, Proxmox clusters,

and IoT devices, achieving a 20% improvement in opera%onal efficiency.

3. Innova%on at 1010data

a. Automa%ng FHIR Schema Synchroniza%on

To address schema discrepancies during the Walgreens integra;on project, I implemented a custom FHIR
schema mirroring process:

• Core Innova%ons:
◦ Designed tools in Java to automa;cally sync Walgreens’ HAPI FHIR schema with our

internal systems, reducing manual interven;on.
◦ Automated FHIR resource mapping and valida;on processes, accelera;ng feature

rollouts and ensuring compliance with HIPAA.
b. Leveraging AWS Services

• Introduced the use of AWS Lambda for serverless data preprocessing, S3 for scalable storage,
and CloudWatch for monitoring integra;on performance.

• Used API Gateway to securely expose endpoints for FHIR interac;ons, streamlining external
connec;vity.

c. Outcome

• Accelerated schema updates, reducing the average sync ;me from 2 weeks to 3 days.

• Enabled seamless inges;on of healthcare data, suppor;ng Walgreens’ analy;cs needs while
maintaining HIPAA compliance.

• Improved the team’s efficiency, resul;ng in a 15% decrease in produc%on defects.

4. Encouraging a Culture of Innova%on

In both roles, I priori;zed fostering a culture where innova;on could thrive:

• Empowering Teams: At Legend Energy Advisors, I conducted workshops on observability best
prac;ces and emerging technologies like CQRS, enabling team members to think beyond
tradi;onal approaches.

• Cross-Func%onal Collabora%on: At 1010data, I encouraged collabora;on between data
engineers, developers, and QA analysts, enabling the team to collec;vely iden;fy opportuni;es
for automa;on and op;miza;on.

• Itera%ve Improvements: I championed the use of retrospec;ves to refine processes and
encourage team members to share ideas for innova;on.

5. Business and Technical Impact

The innova;ve solu;ons I implemented had a direct and measurable impact on the organiza;ons:

• At Legend Energy Advisors, the observability pla^orm not only improved opera;onal efficiency
but also supported the company’s strategic growth by ensuring EPA compliance and enhancing
system resilience.

• At 1010data, the automated schema synchroniza;on and op;mized FHIR integra;on
strengthened our partnership with Walgreens and ensured the delivery of high-quality
healthcare analy;cs solu;ons.

Reflec%on

Innova;on is about iden;fying pain points, exploring crea;ve solu;ons, and aligning them with business
goals. By leveraging technologies like CQRS, Kaja, FHIR, and AWS, I’ve been able to introduce impac^ul
innova;ons that streamlined processes, reduced inefficiencies, and delivered las;ng value for the teams
and organiza;ons I’ve worked with.

Ques%on: Can you describe a %me when you had to balance compe%ng priori%es in a
high-stakes project? How did you handle it?

Answer:
At Legend Energy Advisors, I was tasked with leading the development of an observability
pla^orm while simultaneously managing the implementa;on of a real-;me energy repor;ng
system to ensure EPA compliance. Both projects were cri;cal: the observability pla^orm was
essen;al for improving system reliability, and the repor;ng system was necessary to meet
regulatory deadlines.

Steps I Took to Balance Priori%es:

1. Stakeholder Alignment: I worked closely with business leaders to priori;ze deliverables
and clearly define project deadlines.

2. Resource Alloca%on: I divided my team’s focus, assigning engineers with specific
exper;se to different projects, while ensuring cross-func;onal support during cri;cal
phases.

3. Itera%ve Development: I broke down both projects into smaller, manageable
milestones, focusing on achieving incremental progress for each.

4. Risk Mi%ga%on: I implemented CI/CD pipelines and automated tes;ng to ensure rapid
feedback and reduce delays in both ini;a;ves.

Outcome:

Both projects were delivered on ;me: the observability pla^orm improved incident resolu;on
;mes by 40%, and the repor;ng system met the EPA’s regulatory standards, avoiding poten;al
fines. This experience highlighted my ability to manage compe;ng priori;es through clear
communica;on, effec;ve delega;on, and technical planning.

Ques%on: . How do you approach mentoring and growing technical talent within your
team?

Answer:
Mentorship and talent development have always been integral to my leadership style. At
1010data, I mentored a team of four engineers while leading the integra;on with Walgreens'
HAPI FHIR server.

My Approach:

1. Individualized Development Plans: I iden;fied each team member’s strengths and areas
for growth. For example, I helped one engineer strengthen their Java programming skills
by assigning them schema synchroniza;on tasks and providing targeted code reviews.

2. Knowledge Sharing: I organized weekly workshops on topics such as FHIR schema
mapping, AWS Lambda op%miza%on, and best prac%ces in HIPAA compliance to build
the team’s exper;se.

3. Hands-On Guidance: During cri;cal milestones, I worked alongside team members,
pairing with them to debug issues and op;mize performance.

4. Encouraging Ownership: I encouraged engineers to take ownership of specific
components, fostering accountability and leadership within the team.

Outcome:

By focusing on mentorship, I cul;vated a more skilled and confident team. Over the course of
the project, team efficiency improved, with development ;melines shortened by 20% and fewer
bugs in produc;on.

Ques%on: Can you share an example of how you've improved the scalability of a
system?

Answer:
At Legend Energy Advisors, the observability pla^orm I built needed to handle terabytes of data
daily from both AWS EC2 instances and on-prem Proxmox clusters. Scalability was cri;cal to
ensure smooth opera;ons as the company expanded its energy analy;cs pla^orm.

Steps I Took:

1. Decoupled Architecture: Leveraged Kaja for log streaming and event-driven
processing, ensuring the pla^orm could scale horizontally as data volumes increased.

2. Efficient Data Storage: Op;mized Elas%csearch indexing to support high-throughput
inges;on while maintaining fast query performance for logs and run;me metrics.

3. Serverless Scaling: Used AWS Lambda for real-;me processing of smaller workloads,
reducing the strain on core services.

4. Load Tes%ng: Conducted rigorous load tes;ng using JMeter, ensuring the system could
handle peak loads without performance degrada;on.

Outcome:

The pla^orm successfully scaled to handle a 300% increase in data volume over 18 months
while maintaining sub-second response ;mes for log queries and metrics dashboards.

Ques%on: How do you ensure compliance with regulatory standards in your projects?

Answer:
Regulatory compliance has been a cri;cal focus in many of my projects. For example, at
1010data, I led the team responsible for building a HIPAA-compliant FHIR integra%on with
Walgreens. Similarly, at Legend Energy Advisors, I developed systems for EPA-compliant energy
repor%ng.

Key Prac%ces:

1. Understanding Regula%ons: I immersed myself in the details of HIPAA and EPA
guidelines, ensuring all technical decisions aligned with these standards.

2. Secure Architectures:
◦ Implemented encryp;on for data in transit and at rest using AWS KMS and SSL/

TLS.
◦ Enforced role-based access control (RBAC) using IAM policies.

3. Audit Trails: Designed logging mechanisms to capture and monitor system ac;vi;es for
audi;ng purposes.

4. Regular Compliance Audits: Conducted periodic reviews of the system against
regulatory checklists, ensuring ongoing adherence.

Outcome:

Both projects met regulatory requirements without delays or penal;es. The HIPAA-compliant
integra;on enhanced client trust, while the EPA-compliant repor;ng system ensured seamless
cer;fica;on for energy usage reports.

Ques%on: How have you used automa%on to improve processes or outcomes in your
projects?

Answer:
Automa;on has been a powerful tool in my projects to reduce manual effort, improve
efficiency, and enhance system reliability.

Example 1: CI/CD Pipelines at Legend Energy Advisors

• Challenge: The deployment process for the observability pla^orm was prone to human
errors and delays.

• Solu%on: I built a CI/CD pipeline using Terraform and Ansible to automate infrastructure
provisioning and applica;on deployments.

• Outcome: Deployment ;mes decreased by 50%, and incidents caused by configura;on
errors were virtually eliminated.

Example 2: FHIR Schema Synchroniza%on at 1010data

• Challenge: The FHIR integra;on with Walgreens required frequent updates to stay in
sync with their HAPI server schema.

• Solu%on: I developed an automated schema mirroring tool in Java, which periodically
retrieved and updated our internal schema based on changes in the external HAPI
server.

• Outcome: Schema updates that previously took weeks were completed in hours,
accelera;ng development cycles and improving system reliability.

Automa;on has consistently allowed me to achieve faster delivery, reduce opera;onal
overhead, and enhance system consistency.

Ques%on: How do you approach managing technical debt in your projects?

Answer:
Managing technical debt is essen;al to maintain system scalability, reliability, and
maintainability. At both 1010data and Legend Energy Advisors, I implemented proac;ve
strategies to address technical debt while balancing the delivery of new features.

Key Approaches:

1. Technical Debt Tracking:

◦ Used tools like SonarQube to iden;fy code smells, security vulnerabili;es, and
maintainability issues.

◦ Maintained a backlog of technical debt items with clear priori;es based on their
impact on performance, scalability, and security.

2. Con%nuous Refactoring:

◦ Allocated a percentage of each sprint (typically 10-20%) to address technical
debt.

◦ Focused on refactoring legacy code, improving code readability, and op;mizing
performance-cri;cal areas.

3. Risk Assessment:

◦ Evaluated the poten;al impact of technical debt on the project’s long-term goals,
priori;zing debt that posed the highest risk.

4. Stakeholder Buy-In:

◦ Presented technical debt items to stakeholders with clear jus;fica;ons, using
metrics like SonarQube’s maintainability ra%ng to demonstrate their
importance.

Outcome:

These strategies reduced defect rates and improved code quality, as seen in the observability
pla^orm at Legend Energy Advisors, where regular refactoring reduced incident resolu;on
;mes by 40%.

Ques%on: How do you use SonarQube or similar tools to improve code quality?

Answer:
I’ve successfully integrated SonarQube into mul;ple projects to enhance code quality, ensure
compliance, and reduce technical debt.

Steps I Take with SonarQube:

1. Automated Code Analysis:

◦ Integrated SonarQube into CI/CD pipelines to automa;cally analyze code for
bugs, vulnerabili;es, and code smells on every commit.

◦ Configured quality gates to enforce minimum standards before merging pull
requests.

2. Custom Rules and Standards:

◦ Defined custom coding standards tailored to the project’s needs (e.g., HIPAA
compliance at 1010data).

◦ Added rules for security checks, ensuring compliance with OWASP guidelines.
3. Developer Training:

◦ Conducted training sessions to help the team interpret SonarQube reports and
adopt best prac;ces.

◦ Encouraged developers to fix high-priority issues immediately while planning for
lower-priority fixes.

Outcome:

At Legend Energy Advisors, the use of SonarQube reduced code smells by 30% within the first
three months, leading to a more stable and secure observability pla^orm.

Ques%on: Can you describe how you approach system integra%ons in complex
projects?

Answer:
System integra;on is cri;cal to ensure seamless communica;on and data flow between
different components. At 1010data, I led the integra;on with Walgreens' HAPI FHIR server,
which required synchroniza;on of complex schemas and data inges;on pipelines.

Key Steps:

1. Understanding the Interfaces:

◦ Conducted detailed API reviews of Walgreens’ HAPI FHIR server to understand
schema structures, authen;ca;on requirements, and data flows.

2. Schema Synchroniza%on:

◦ Developed a Java-based schema mirroring tool to align our internal schema with
Walgreens’ updates dynamically.

◦ Used AWS Lambda for periodic schema valida;on and synchroniza;on tasks.
3. Tes%ng and Monitoring:

◦ Built extensive integra;on tests using Postman and JUnit to verify data
consistency and schema compliance.

◦ Deployed monitoring tools like CloudWatch and Elas%csearch to track integra;on
health.

Outcome:

The integra;on allowed real-;me inges;on of pa;ent data while maintaining 100% schema
compliance, enabling HIPAA-compliant analy;cs and decision-making.

Ques%on: How do you approach postmortems and foster a no-blame culture?

Answer:
Postmortems are vital for learning from incidents and improving system reliability. I’ve
conducted numerous postmortems, par;cularly at Legend Energy Advisors, where I built the
observability pla^orm.

Postmortem Approach:

1. Establishing the No-Blame Culture:

◦ Reinforced the idea that incidents are opportuni;es to improve, not assign
blame.

◦ Focused discussions on what happened, not who caused it.
2. Detailed Incident Analysis:

◦ Used the observability pla^orm to analyze logs, traces, and metrics.
◦ Iden;fied root causes using tools like Elas%csearch and Grafana, mapping them

to contribu;ng factors (e.g., system misconfigura;on, code bugs).
3. Ac%onable Outcomes:

◦ Created a list of ac;onable tasks, such as adding automated tests or enhancing
aler%ng thresholds.

◦ Incorporated findings into sprint planning to priori;ze fixes.
4. Transparency and Follow-Up:

◦ Shared postmortem reports across teams to promote cross-func;onal learning.
◦ Scheduled follow-up mee;ngs to ensure implemented ac;ons were effec;ve.

Outcome:

This approach improved incident resolu;on ;mes and prevented recurrence of similar issues.
For example, implemen;ng insights from postmortems reduced high-severity incidents by 25%
over six months.

Ques%on: How do you foster collabora%on and innova%on in cross-func%onal teams?

Answer:
Cross-func;onal collabora;on was key to the success of many projects I’ve led, including the
observability pla^orm at Legend Energy Advisors and the FHIR integra;on at 1010data.

Key Strategies:

1. Shared Goals:

◦ Established clear objec;ves that aligned with both technical and business
priori;es (e.g., regulatory compliance, system reliability).

◦ Used tools like Confluence to create shared documenta;on and promote
visibility.

2. Collabora%ve Tools:

◦ Leveraged Slack, Jira, and GitHub to streamline communica;on and issue
tracking across engineering, DevOps, and business teams.

3. Hackathons and Workshops:

◦ Organized innova;on days to explore new ideas, such as be[er indexing
strategies for Elas;csearch or op;mizing Kaha log streaming.

◦ Encouraged team members to experiment and present solu;ons to the group.
4. No-Blame Retrospec%ves:

◦ Held retrospec;ves aier major milestones, focusing on lessons learned and
opportuni;es for improvement.

Outcome:

These efforts fostered an environment where team members felt empowered to contribute,
resul;ng in faster delivery cycles and a 30% improvement in cross-team collabora%on metrics.

Ques%on: How do you approach managing technical debt in your projects?

Answer:
Managing technical debt is essen;al to maintain system scalability, reliability, and
maintainability. At both 1010data and Legend Energy Advisors, I implemented proac;ve
strategies to address technical debt while balancing the delivery of new features.

Key Approaches:

1. Technical Debt Tracking:

◦ Used tools like SonarQube to iden;fy code smells, security vulnerabili;es, and
maintainability issues.

◦ Maintained a backlog of technical debt items with clear priori;es based on their
impact on performance, scalability, and security.

2. Con%nuous Refactoring:

◦ Allocated a percentage of each sprint (typically 10-20%) to address technical
debt.

◦ Focused on refactoring legacy code, improving code readability, and op;mizing
performance-cri;cal areas.

3. Risk Assessment:

◦ Evaluated the poten;al impact of technical debt on the project’s long-term goals,
priori;zing debt that posed the highest risk.

4. Stakeholder Buy-In:

◦ Presented technical debt items to stakeholders with clear jus;fica;ons, using
metrics like SonarQube’s maintainability ra%ng to demonstrate their
importance.

Outcome:

These strategies reduced defect rates and improved code quality, as seen in the observability
pla^orm at Legend Energy Advisors, where regular refactoring reduced incident resolu;on
;mes by 40%.

Ques%on: How do you use SonarQube or similar tools to improve code quality?

Answer:
I’ve successfully integrated SonarQube into mul;ple projects to enhance code quality, ensure
compliance, and reduce technical debt.

Steps I Take with SonarQube:

1. Automated Code Analysis:

◦ Integrated SonarQube into CI/CD pipelines to automa;cally analyze code for
bugs, vulnerabili;es, and code smells on every commit.

◦ Configured quality gates to enforce minimum standards before merging pull
requests.

2. Custom Rules and Standards:

◦ Defined custom coding standards tailored to the project’s needs (e.g., HIPAA
compliance at 1010data).

◦ Added rules for security checks, ensuring compliance with OWASP guidelines.
3. Developer Training:

◦ Conducted training sessions to help the team interpret SonarQube reports and
adopt best prac;ces.

◦ Encouraged developers to fix high-priority issues immediately while planning for
lower-priority fixes.

Outcome:

At Legend Energy Advisors, the use of SonarQube reduced code smells by 30% within the first
three months, leading to a more stable and secure observability pla^orm.

Ques%on: Can you describe how you approach system integra%ons in complex projects?

Answer:
System integra;on is cri;cal to ensure seamless communica;on and data flow between
different components. At 1010data, I led the integra;on with Walgreens' HAPI FHIR server,
which required synchroniza;on of complex schemas and data inges;on pipelines.

Key Steps:

1. Understanding the Interfaces:

◦ Conducted detailed API reviews of Walgreens’ HAPI FHIR server to understand
schema structures, authen;ca;on requirements, and data flows.

2. Schema Synchroniza%on:

◦ Developed a Java-based schema mirroring tool to align our internal schema with
Walgreens’ updates dynamically.

◦ Used AWS Lambda for periodic schema valida;on and synchroniza;on tasks.
3. Tes%ng and Monitoring:

◦ Built extensive integra;on tests using Postman and JUnit to verify data
consistency and schema compliance.

◦ Deployed monitoring tools like CloudWatch and Elas%csearch to track integra;on
health.

Outcome:

The integra;on allowed real-;me inges;on of pa;ent data while maintaining 100% schema
compliance, enabling HIPAA-compliant analy;cs and decision-making.

Ques%on: How do you approach postmortems and foster a no-blame culture?

Answer:
Postmortems are vital for learning from incidents and improving system reliability. I’ve
conducted numerous postmortems, par;cularly at Legend Energy Advisors, where I built the
observability pla^orm.

Postmortem Approach:

1. Establishing the No-Blame Culture:

◦ Reinforced the idea that incidents are opportuni;es to improve, not assign
blame.

◦ Focused discussions on what happened, not who caused it.
2. Detailed Incident Analysis:

◦ Used the observability pla^orm to analyze logs, traces, and metrics.
◦ Iden;fied root causes using tools like Elas%csearch and Grafana, mapping them

to contribu;ng factors (e.g., system misconfigura;on, code bugs).
3. Ac%onable Outcomes:

◦ Created a list of ac;onable tasks, such as adding automated tests or enhancing
aler%ng thresholds.

◦ Incorporated findings into sprint planning to priori;ze fixes.
4. Transparency and Follow-Up:

◦ Shared postmortem reports across teams to promote cross-func;onal learning.
◦ Scheduled follow-up mee;ngs to ensure implemented ac;ons were effec;ve.

Outcome:

This approach improved incident resolu;on ;mes and prevented recurrence of similar issues.
For example, implemen;ng insights from postmortems reduced high-severity incidents by 25%
over six months.

Ques%on: How do you foster collabora%on and innova%on in cross-func%onal teams?

Answer:
Cross-func;onal collabora;on was key to the success of many projects I’ve led, including the
observability pla^orm at Legend Energy Advisors and the FHIR integra;on at 1010data.

Key Strategies:

1. Shared Goals:

◦ Established clear objec;ves that aligned with both technical and business
priori;es (e.g., regulatory compliance, system reliability).

◦ Used tools like Confluence to create shared documenta;on and promote
visibility.

2. Collabora%ve Tools:

◦ Leveraged Slack, Jira, and GitHub to streamline communica;on and issue
tracking across engineering, DevOps, and business teams.

3. Hackathons and Workshops:

◦ Organized innova;on days to explore new ideas, such as be[er indexing
strategies for Elas;csearch or op;mizing Kaha log streaming.

◦ Encouraged team members to experiment and present solu;ons to the group.
4. No-Blame Retrospec%ves:

◦ Held retrospec;ves aier major milestones, focusing on lessons learned and
opportuni;es for improvement.

Outcome:

These efforts fostered an environment where team members felt empowered to contribute,
resul;ng in faster delivery cycles and a 30% improvement in cross-team collabora%on metrics.

These answers reflect a balance of technical exper;se and leadership, demonstra;ng your
ability to manage complexity, promote collabora;on, and drive innova;on. Let me know if you'd
like further refinements!

4o
Ques%on: How do you ensure that you set realis%c expecta%ons with stakeholders and your
team?

Answer:
Selng realis;c expecta;ons is essen;al to managing both stakeholder sa;sfac;on and team
morale. My approach involves clear communica;on, understanding the constraints, and
managing trade-offs.

Key Approaches:

1. Stakeholder Alignment:

◦ I begin by working closely with stakeholders to understand their goals, priori;es,
and ;melines.

◦ I ensure that their expecta;ons are aligned with the technical feasibility by
providing detailed scope, risk assessments, and ;meline es;mates.

2. Transparent Communica%on:

◦ I openly communicate what is achievable within the given constraints (;me,
resources, and scope).

◦ I provide a clear breakdown of dependencies, poten;al bo[lenecks, and
resource needs.

3. Data-Driven Es%mates:

◦ I leverage historical data, performance metrics, and prototypes to inform my
;me and resource es;mates.

◦ If changes to the project scope occur, I reevaluate the plan and communicate
updates with relevant stakeholders.

Outcome:

By aligning expecta;ons early on and providing regular updates, I’ve been able to maintain trust
with stakeholders and avoid project scope creep. For instance, at 1010data, by selng clear
expecta;ons upfront, I ensured smooth project deliveries without major surprises, which
resulted in a 20% faster delivery %me.

Ques%on: How do you handle situa%ons where stakeholders request unrealis%c %melines or
features that are not feasible within the given constraints?

Answer:
When faced with unrealis;c requests, my goal is to align the stakeholders’ expecta;ons with
what is technically feasible and strategically beneficial.

Key Approaches:

1. Honest and Respecgul Communica%on:

◦ I approach such situa;ons with a focus on educa;ng stakeholders about the
technical limita;ons and trade-offs.

◦ I provide clear explana;ons of why certain ;melines or features are not feasible
based on the current resource availability, technical limita;ons, or scope.

2. Offer Alterna%ves:

◦ Instead of saying “no,” I propose realis;c alterna;ves that s;ll meet the
stakeholders' business objec;ves. For example, if a feature cannot be delivered

by the requested deadline, I suggest a phased approach or deliverable MVP that
can be expanded later.

3. Data-Backed Decision Making:

◦ I present data (e.g., historical performance, risk analysis, or technical
assessments) to support my posi;on and jus;fy my proposed adjustments.

Outcome:

By having these conversa;ons upfront and offering well-reasoned alterna;ves, I’ve maintained
strong rela;onships with stakeholders and kept projects on track. At Legend Energy Advisors,
such discussions helped refine project ;melines and resulted in the successful delivery of high-
priority features, keeping stakeholders engaged and sa;sfied.

Ques%on: How do you priori%ze features and deliverables when there are compe%ng
demands and limited resources?

Answer:
Priori;zing effec;vely requires balancing business goals with technical feasibility and resource
availability.

Key Approaches:

1. Collabora%ve Priori%za%on:

◦ I involve both business and technical stakeholders in priori;za;on sessions, using
frameworks like MoSCoW or Kano Model to help determine which features will
provide the highest value to the business.

◦ I ensure that the decisions are based on both strategic business goals and
technical dependencies.

2. Risk and Impact Assessment:

◦ I evaluate each feature or deliverable’s poten;al impact on the product,
company, and customers. I consider both short-term wins and long-term
scalability to ensure that cri;cal tasks are priori;zed.

3. Time and Resource Alloca%on:

◦ I assess the technical complexity and ;me requirements of each deliverable,
balancing them against the available resources.

◦ I oien employ a minimum viable product (MVP) approach for features to deliver
value early and iterate upon.

Outcome:

This approach ensures that high-value features are delivered on ;me, while lower-priority tasks
are either deferred or removed from the scope. At 1010data, this resulted in maintaining a 90%
customer sa%sfac%on rate despite resource constraints, by focusing on delivering key features
first and itera;ng based on feedback.

Ques%on: How do you manage stakeholder expecta%ons when a project hits roadblocks or
faces delays?

Answer:
When a project faces roadblocks or delays, clear and proac;ve communica;on is cri;cal to
maintaining trust and adjus;ng expecta;ons accordingly.

Key Approaches:

1. Early Warning System:

◦ I keep stakeholders informed as soon as I iden;fy a roadblock or delay, offering a
clear explana;on of the issue, its impact, and the steps being taken to resolve it.

◦ I provide alterna;ve solu;ons or adjusted ;melines to avoid surprises.
2. Transparency and Accountability:

◦ I take responsibility for any setbacks, explaining the root cause and what changes
or adjustments are being made to resolve the issue.

◦ I involve the team in brainstorming solu;ons, allowing for a collabora;ve
approach to overcoming the problem.

3. Regular Updates:

◦ I communicate progress frequently through status reports or mee;ngs, ensuring
stakeholders are aware of the current state of the project and any adjustments to
;melines.

Outcome:

By being transparent and proac;ve, I’ve been able to minimize frustra;on and keep
stakeholders engaged even when facing delays. At Legend Energy Advisors, this approach
helped avoid project cancella;ons by ensuring the stakeholders remained confident that issues
were being managed effec;vely.

Ques%on: How do you communicate technical risks to non-technical stakeholders?

Answer:
Effec;vely communica;ng technical risks to non-technical stakeholders is essen;al to
maintaining alignment and making informed decisions.

Key Approaches:

1. Simplified Language and Analogies:

◦ I use analogies and clear, simple language to explain technical concepts in a way
that stakeholders can understand. For example, explaining system architecture
risks by comparing it to a car engine where mul;ple components must work
together efficiently.

2. Quan%fy Risks:

◦ I focus on quan;fying the poten;al impact of technical risks on project ;melines,
budgets, and quality. For example, “If we do not address this API limita;on, it
could result in a 30% slower performance, causing delays in cri;cal deliverables.”

3. Highlight Business Impact:

◦ I connect the technical risk to poten;al business outcomes, such as customer
sa;sfac;on, revenue, or compliance. This helps non-technical stakeholders
understand the importance of addressing the risk.

Outcome:

This approach has been successful in ensuring that non-technical stakeholders not only
understand the risks but also support the necessary mi;ga;ons. For instance, at 1010data,
explaining the poten;al compliance risks of not integra;ng securely with Walgreens' FHIR server
resulted in ;mely support from business leaders for addi;onal resources to mi;gate security
risks.

Ques%on: What’s your architecture process?

Ques%on Insight: They want to know how you approach building scalable, maintainable, and
efficient systems.

Answer:

• Discovery Phase: Start by understanding business goals, constraints, and user
requirements. I work closely with stakeholders to gather these inputs through interviews
or workshops.

• Analysis & Design: Translate requirements into system capabili;es, considering tradeoffs
like scalability, cost, and performance. I use Domain-Driven Design (DDD) to iden;fy
bounded contexts and ensure separa;on of concerns.

• Valida%on: I create diagrams (e.g., UML, sequence diagrams) and prototypes to validate
my design with both technical and non-technical teams.

• Execu%on & Itera%on: Partner with engineers to implement the architecture,
emphasizing CI/CD pipelines, test coverage, and modularity. Monitor the system post-
deployment to validate assump;ons.

• Example: For a u;lity op;miza;on SaaS pla^orm I led, I designed a microservices-based
architecture to decouple core analy;cs, IoT integra;ons, and visualiza;on tools, ensuring
each team could work independently.

Ques%on: How do you work with stakeholders?

Ques%on Insight: They want to assess your communica;on skills and how you align technical
solu;ons with business needs.

Answer:

• Regular Communica%on: I schedule bi-weekly check-ins or demos with stakeholders to
share progress and gather feedback.

• Bridge the Gap: I translate complex technical concepts into business terms to ensure
alignment. For example, I’ve used simplified diagrams and analogies to explain cloud
architecture to non-technical teams.

• Ac%ve Listening: I focus on understanding their goals, pain points, and constraints
before proposing solu;ons.

• Example: At a prior role, a stakeholder wanted real-;me analy;cs on constrained
resources. I clarified their requirements, proposed using Kaha for streaming data, and
explained its scalability in terms of future growth.

Ques%on: How do you priori%ze tasks?

Ques%on Insight: They want to see how you balance technical debt, features, and deadlines.

Answer:

• Impact vs. Effort: I evaluate tasks based on their impact on business outcomes versus
the effort required, using frameworks like RICE (Reach, Impact, Confidence, Effort).

• Stakeholder Input: I involve stakeholders to priori;ze tasks that align with strategic
goals.

• Con%nuous Review: Use an agile approach to reassess priori;es during sprints.
• Example: When leading a backlog for a healthcare analy;cs tool, I priori;zed fixing a

cri;cal data pipeline issue over adding a new feature since it directly impacted SLAs with
our client.

Ques%on: How do you document your process?

Ques%on Insight: They want to assess how you ensure transparency and maintainability for
your work.

Answer:

• Layered Documenta%on:
◦ High-Level Docs: I provide architecture diagrams and decision records (ADRs) for

stakeholders.
◦ Technical Docs: I use Markdown or Confluence for API specs, database schemas,

and deployment guides.
◦ Code Comments: Embed clear comments in the codebase for developers.

• Tooling: U;lize tools like Swagger/OpenAPI for documen;ng APIs and auto-genera;ng
client libraries.

• Example: For a Flask-based API, I maintained OpenAPI documenta;on that detailed
every endpoint, ensuring both the frontend team and external partners could integrate
seamlessly.

Ques%on: Can you describe a %me you disagreed with a stakeholder or team member? How
did you resolve it?

Ques%on Insight: Tests conflict resolu;on and collabora;ve problem-solving skills.

Answer:

• Scenario: A product manager wanted a feature priori;zed, but I believed fixing technical
debt was more cri;cal.

• Approach: I presented data (error rates, SLA impact) to show the long-term benefits of
addressing the debt. I also proposed a phased approach, tackling the debt first and
scheduling the feature right aier.

• Outcome: This approach resolved the disagreement, and we reduced down;me by 20%,
which indirectly improved the product's user experience.

Ques%on: How do you approach building systems for scalability and fault tolerance?

Ques%on Insight: They want to see how you design robust systems.

Answer:

• Scalability:
◦ Adopt cloud-na;ve principles like horizontal scaling and stateless services.
◦ Use managed services (e.g., AWS S3, DynamoDB) where possible to reduce

opera;onal overhead.
• Fault Tolerance:

◦ Implement retries, circuit breakers, and distributed tracing (e.g., with
Prometheus or Datadog).

◦ Design for redundancy (e.g., mul;ple Kaha par;;ons, database replica;on).
• Example: In a real-;me Kaha pipeline project, I par;;oned data streams based on key-

value pairs to ensure load balancing and set up retries for failed consumers.

Ques%on: How do you handle technical debt?

Ques%on Insight: They’re evalua;ng your ability to balance short-term delivery and long-term
code health.

Answer:

• Assess Debt Regularly: Use tools like SonarQube to measure code quality and track
areas needing refactoring.

• Priori%ze Pragma%cally: Address debt with the highest impact on performance or
scalability.

• Communicate ROI: Show stakeholders how fixing debt improves system reliability or
reduces costs.

• Example: I introduced a bi-weekly "refactoring sprint" in one team, which reduced
incident resolu;on ;mes by 30%.

Ques%on: How do you ensure your team follows best prac%ces?

Ques%on Insight: Tests your leadership and mentoring skills.

Answer:

• Code Reviews: Establish a culture of thorough peer reviews to catch issues early.
• Guidelines: Maintain a well-documented set of coding and design standards.
• Training: Host internal workshops on topics like DDD or cloud architecture.
• Example: I implemented a “review checklist” at a previous company, which reduced

produc;on bugs by 25%.

Ques%on: How do you handle incomplete or ambiguous requirements?

Ques%on Insight: Evaluates your problem-solving and communica;on skills.

Answer:

• Clarify & Validate: I engage stakeholders to refine requirements, using mockups or
prototypes for valida;on.

• Assume Reasonably: If immediate clarifica;on isn’t possible, I proceed with reasonable
assump;ons and document them explicitly.

• Iterate: Use agile feedback loops to refine the solu;on.
• Example: While designing a pa;ent data system, unclear compliance requirements

arose. I consulted legal experts and iterated designs to ensure HIPAA compliance.

Ques%on: Tell me about a challenging project you led and its outcome.

Ques%on Insight: They want a concrete example of your leadership.

Answer:

• Scenario: I led a migra;on from monolith to microservices for a high-traffic analy;cs
pla^orm.

• Challenges: Ensuring zero down;me, aligning cross-func;onal teams, and handling
legacy dependencies.

• Approach: I created a phased rollout plan, priori;zed cri;cal services, and introduced
observability tools like Prometheus.

• Outcome: The migra;on reduced deployment ;mes by 40% and improved system
scalability by 3x.

Ques%on: Design a system to handle real-%me EHR data inges%on and processing that is
HIPAA-compliant. The system should support FHIR-based APIs for downstream consumers.
How would you design it?

Answer:

• Inges%on Layer:

◦ Use AWS API Gateway to expose a secure entry point for HL7/FHIR messages
over HTTPS (TLS-encrypted).

◦ Deploy a Kaja cluster to handle real-;me inges;on of HL7/FHIR messages,
ensuring scalability and durability. Par;;on data by pa;ent ID to enable parallel
processing.

◦ Apply AWS WAF (Web Applica;on Firewall) for added security against malicious
requests.

• Processing Layer:

◦ Use Go services deployed in AWS ECS or Fargate for processing incoming data.
These services validate the HL7/FHIR messages against predefined schemas and
transform them if needed.

◦ Store data transforma;on rules in DynamoDB, enabling quick retrieval for
run;me valida;on.

• Storage Layer:

◦ Store FHIR resources (e.g., Pa;ent, Observa;on, Encounter) in Amazon Aurora
PostgreSQL, as it supports JSON storage for FHIR resources.

◦ Enable encryp%on at rest using AWS KMS for HIPAA compliance.
• FHIR API Layer:

◦ Build a SMART on FHIR-compliant API using Go and deploy it on AWS Lambda or
ECS. This API will allow downstream systems (e.g., pa;ent portals, analy;cs tools)
to retrieve pa;ent data securely.

◦ Add caching with Redis to improve response ;mes for frequently accessed
resources.

• Compliance:

◦ Enable AWS CloudTrail for audi;ng all API calls and access.
◦ Use AWS Secrets Manager to manage creden;als and secure tokens.
◦ Apply data masking for logs and monitoring tools (e.g., using OpenTelemetry) to

avoid storing sensi;ve pa;ent data.
• SLA Management:

◦ Define SLAs, such as data inges%on latency (<500ms) and API response %mes
(<200ms).

◦ Monitor with AWS CloudWatch, selng up alarms for SLA breaches.

Ques%on: How would you ensure HIPAA compliance while building a secure FHIR API that
integrates with third-party SMART apps?

Answer:

• Authen%ca%on & Authoriza%on:

◦ Use OAuth 2.0 with OpenID Connect for SMART on FHIR authen;ca;on.
Implement token-based access control to ensure that users only access
permi[ed data.

◦ Integrate with an Iden%ty Provider (IdP) like Okta or AWS Cognito to handle user
authen;ca;on securely.

• Data Encryp%on:

◦ Encrypt all data in transit using TLS 1.2/1.3 and at rest using AWS KMS.
◦ Ensure that tokens exchanged with third-party SMART apps are encrypted.

• Access Control:

◦ Implement role-based access control (RBAC) and scopes for API permissions. For
example, a pa;ent app may only access specific pa;ent data, while an admin app
can access broader resources.

• Audit Logs:

◦ Capture all API interac;ons, including requests from SMART apps, using AWS
CloudTrail and Amazon S3 for long-term storage.

◦ Ensure logs are immutable by enabling S3 Object Lock.
• Rate Limi%ng:

◦ Apply rate limits in AWS API Gateway to prevent abuse or unauthorized bulk
data access.

• Monitoring & Incident Response:

◦ Use AWS Security Hub to detect and alert on any poten;al compliance
viola;ons.

◦ Conduct regular vulnerability scans with AWS Inspector and penetra;on tes;ng.

Ques%on: Design a scalable, HIPAA-compliant Kaja-based event pipeline for processing
pa%ent lab results in near real-%me.

Answer:

• Inges%on:

◦ Lab results are received as HL7 messages from external labs via AWS API
Gateway or AWS SQS (for batch processing).

◦ Messages are published to a Kaja topic called lab_results aier schema
valida;on using Kaja Schema Registry.

• Processing:

◦ Create Go-based Kaja consumers using confluent-kaja-go to process
messages.

◦ Validate HL7 messages and convert them into FHIR resources (e.g.,
Diagnos;cReport) for downstream consumers.

• Data Storage:

◦ Store processed FHIR resources in Amazon RDS PostgreSQL with JSONB support,
ensuring encrypted storage.

◦ Use Amazon S3 for archiving raw HL7 messages and compliance backups.
• No%fica%ons:

◦ Publish processed lab results to a Kaha topic (processed_results) for real-;me
no;fica;ons.

◦ Allow pa;ent portals or analy;cs services to consume this topic.
• HIPAA Compliance:

◦ Enable Kaja ACLs to ensure only authorized services access sensi;ve topics.
◦ Set up TLS encryp%on for all Kaha traffic.
◦ Rotate Kaha creden;als using AWS Secrets Manager.

• Fault Tolerance:

◦ Use Kaja replica%on to ensure durability.
◦ Implement retries and dead-le[er queues (DLQs) for failed message processing.

• Monitoring:

◦ Integrate with Prometheus and Grafana to monitor pipeline health (e.g.,
consumer lag, message throughput).

◦ Set SLA thresholds, such as processing each lab result within 5 seconds.

Ques%on: How would you implement a reliable SLA-compliant system for delivering
medica%on alerts to providers using AWS and Kaja?

Answer:

• Inges%on:

◦ Alerts are ingested via AWS API Gateway from external providers or EHR
systems.

• Event Pipeline:

◦ Publish alerts to a Kaja topic (medica;on_alerts).
◦ Use par;;ons for load balancing based on provider ID.

• Processing:

◦ Develop Go-based consumers to process alerts and send no;fica;ons via SNS/
SQS or SMS/Email (e.g., Twilio integra;on).

• Storage & History:

◦ Store processed alerts in DynamoDB for quick retrieval and audi;ng.
◦ Use S3 for long-term storage of raw and processed alerts.

• Compliance:

◦ Encrypt all alerts at rest and in transit.
◦ Ensure provider no;fica;on logs are auditable and compliant with HIPAA.

• SLA Compliance:

◦ SLA requirement: Deliver 99% of alerts within 2 seconds.
◦ Use Kaja producer acks=all to ensure data durability.
◦ Monitor latency with AWS CloudWatch and set alarms for SLA breaches.

• Fault Tolerance:

◦ Implement retries for failed no;fica;ons and a dead-le[er queue for
undeliverable alerts.

Ques%on: How would you build a scalable FHIR-based data lake for pa%ent analy%cs on AWS?

Answer:

• Data Inges%on:

◦ Use AWS Glue to extract and transform FHIR data from mul;ple sources (EHRs,
IoT devices, lab systems).

◦ Store raw FHIR JSON files in Amazon S3 (par;;oned by date and pa;ent ID).
• Data Processing:

◦ Use AWS EMR with Apache Spark for batch processing of large datasets and
conver;ng FHIR data into a columnar format like Parquet for analy;cs.

◦ Real-;me streams can be processed using Kaja + Kinesis for immediate insights.
• Data Querying:

◦ Use Amazon Athena for ad-hoc queries on the S3 data lake.
◦ Load transformed data into RedshiT for advanced analy;cs.

• HIPAA Compliance:

◦ Use Amazon Macie to monitor sensi;ve data and detect poten;al
misconfigura;ons.

◦ Enable VPC Endpoints and private links to ensure data doesn't traverse public
networks.

• Access Control:

◦ Implement IAM policies to restrict access by role (e.g., researchers, data
engineers).

◦ Tokenize or anonymize pa;ent data for non-clinical use cases.

Ques%on: How do you design APIs for long-term maintainability?

Answer:

"Designing APIs for long-term maintainability requires focusing on clear standards,
adaptability, and a strong founda%on for growth. Here’s my approach:

1. Adopt Clear Standards:

◦ I ensure APIs adhere to well-established principles like RESTful design or, when
appropriate, GraphQL.

◦ I use OpenAPI/Swagger for documenta;on, which helps developers understand
and consume the API easily.

2. Versioning Strategy:

◦ I implement versioning to avoid breaking changes. For example, I use seman;c
versioning (e.g., /v1, /v2) or feature toggles for gradual rollouts. This allows
consumers to migrate at their own pace without impac;ng opera;ons.

◦ I also provide backward compa;bility wherever possible to reduce disrup;on.
3. Strong Schema Design:

◦ I priori;ze designing schemas that accommodate future growth, using prac;ces
like avoiding ;ghtly coupled data structures and including op;onal fields for
extensibility.

◦ For example, in my integra;on of 1010data with Walgreens’ HAPI FHIR server, I
designed the schema to account for evolving FHIR standards, ensuring flexibility
for updates.

4. Observability and Monitoring:

◦ I design APIs with built-in observability, adding logs, metrics, and tracing (e.g.,
with tools like Grafana or CloudWatch). This helps detect issues early and
improves debugging.

5. Security and Compliance:

◦ Security is non-nego;able. I implement OAuth2.0 for authen;ca;on and encrypt
data in transit and at rest using TLS and AWS KMS. In HIPAA-compliant projects,
like building SMART on FHIR pipelines, I ensured all APIs met strict regulatory
requirements.

6. Automa%on and Tes%ng:

◦ I write thorough test suites covering unit, integra;on, and regression tests to
validate API behavior. CI/CD pipelines run these tests automa;cally to catch
issues early.

7. Documenta%on and Support:

◦ I provide robust, developer-friendly documenta;on and ensure API consumers
have access to support channels. For instance, I include clear usage examples and
error handling details in API docs.

By priori%zing clear standards, backward compa%bility, observability, and security, I ensure
the APIs I design are not only maintainable but also scalable and easy to evolve over %me.

Ques%on: How do you handle API versioning?

Answer: When handling API versioning, I follow a strategic approach to ensure backward
compa%bility, flexibility, and smooth evolu%on of the API over %me. Here’s my approach to
API versioning:

1. Use URL-Based Versioning:

◦ I prefer versioning in the URL path (e.g., /api/v1/ or /api/v2/) because it's
explicit and makes the version clear to both developers and clients. This
approach is simple and provides easy management of different API versions. For
example, when integra;ng 1010data with Walgreens' HAPI FHIR server, I used /
v1/ for the ini;al version and then incremented to /v2/ to accommodate schema
changes.

2. Seman%c Versioning:

◦ I follow seman%c versioning principles (major.minor.patch) for internal
versioning.

▪ Major version changes indicate breaking changes (e.g., changes that are
incompa;ble with previous versions).

▪ Minor version changes are for adding new features or improvements that
maintain backward compa;bility.

▪ Patch version changes handle bug fixes that don't affect the API's
interface.

3. Depreca%on Strategy:

◦ I implement a depreca%on policy to ensure that older versions are not abruptly
removed. When introducing a new major version, I make sure to provide clear
depreca;on no;ces in API responses (e.g., X-API-Deprecated: true) and in
documenta;on. This allows consumers to migrate gradually to the new version.

◦ For instance, I’ve handled depreca;on no;ces in several integra;ons (e.g.,
upda;ng the FHIR schema), ensuring clients are aware of when they need to
upgrade.

4. Backward Compa%bility:

◦ I priori;ze backward compa;bility when possible by making non-breaking
changes, such as adding new fields with default values or using feature flags to
control new func;onality. For example, if I add a new parameter to an endpoint, I
ensure it's op;onal and doesn’t affect exis;ng consumers.

5. Use of Custom Headers for Versioning:

◦ In some cases, especially when dealing with microservices or when APIs evolve
rapidly, I might version the API using custom HTTP headers (e.g., X-API-Version:
1). This allows clients to specify the version they want to use, providing flexibility
while maintaining a clean URL structure.

6. Granular Versioning:

◦ For large, complex systems, I may version individual API resources (endpoints)
rather than the en;re API. This allows more precise control over changes and
reduces the disrup;on to clients when only a small part of the API is evolving.

7. Communica%on and Documenta%on:

◦ I ensure that versioning details are well-documented in the API docs. This
includes clear instruc;ons on how to specify versions, migrate from old versions,
and the expected behavior of deprecated endpoints. Proper documenta;on
ensures that clients know exactly what changes they can expect and when to
migrate to newer versions.

By employing these strategies, I ensure that API versioning is well-managed, allowing for
smooth transi%ons between versions and minimizing disrup%on to consumers.

Ques%on: How do you approach schema normaliza%on when designing modules or
components for the project to ensure data integrity, scalability, performance and
maintainability?

Answer: When approaching schema normaliza%on, my goal is to design data structures that
strike the right balance between integrity, scalability, performance, and long-term
maintainability. Here's how I tackle schema normaliza%on in my projects:

1. Ensure Data Integrity:

◦ I start by analyzing the data rela;onships and ensure that the schema reflects
real-world rela%onships accurately. This includes elimina%ng redundancy (e.g.,
by normalizing data to 3NF or higher) to avoid inconsistencies or anomalies
(insert, update, delete anomalies).

◦ For instance, when integra;ng 1010data with Walgreens' HAPI FHIR server for
SMART on FHIR, I ensured that the schema respected FHIR’s resource-based
design, normalizing data to prevent duplica;on and maintaining strong

referen%al integrity between resources like Pa;ents, Encounters, and
Observa;ons.

2. Balance Normaliza%on with Performance:

◦ While normaliza;on ensures data integrity, it can some;mes lead to
performance overhead due to complex joins. To address this, I evaluate the use
case to determine the right level of normaliza%on. In some cases, I may
denormalize certain frequently queried data to improve read performance,
especially when working with large datasets (e.g., with AWS RedshiT or
DynamoDB for analy;cs pipelines).

◦ For example, in data-heavy applica;ons, I have used materialized views or
caching layers (like Redis) to op;mize frequently accessed but complex queries.

3. Scalability:

◦ I design schemas with scalability in mind by considering sharding or par%%oning
strategies for large datasets. For instance, when designing a schema for a real-
;me data pipeline with AWS S3 and Kinesis, I ensure that par;;on keys and data
types are aligned to minimize hot spots and avoid bo[lenecks during data
inges;on and processing.

◦ I also consider NoSQL solu;ons (e.g., AWS DynamoDB or Cosmos DB) when
appropriate, as they provide horizontal scalability and are be[er suited for
certain use cases, like high-frequency writes or unstructured data.

4. Modular Design for Maintainability:

◦ I focus on designing schemas in a modular way to ensure maintainability. This
means splilng the schema into logical subcomponents or en%%es with clear
boundaries. When building components for observability pla^orms, for example,
I made sure that log, metric, and trace data were kept in separate tables or
collec;ons but were s;ll easily joinable for analysis.

◦ For versioning and backward compa;bility, I use soT schema changes such as
adding new columns with default values, or implemen;ng data migra%on
strategies using tools like DBT or AWS Glue to ensure that schema changes can
be rolled out smoothly without disrup;ng exis;ng systems.

5. Future Proofing:

◦ I also design schemas with future changes in mind by ensuring that flexibility is
built in. I include fields that allow for easy extensibility (e.g., op;onal fields or
JSON fields for unstructured data). For example, when implemen;ng HIPAA-
compliant pipelines, I made sure that the schema could handle evolving FHIR
standards, which required adding new fields without disrup;ng exis;ng
pipelines.

6. Monitoring and Observability:

◦ Throughout the schema design, I ensure that the system includes metrics and
logs for monitoring performance and data integrity. This helps in iden;fying
issues like data duplica;on or slow queries early. I use tools like AWS
CloudWatch or Datadog to capture and analyze the performance of database
opera;ons and ensure they meet performance standards.

By focusing on normaliza%on for integrity, careful design for performance, and building for
future scalability and maintainability, I ensure that my data schemas are both robust and
flexible, adap%ng as the system evolves over %me."

This answer reflects your experience designing systems with complex data flows (such as the
integra;on with Walgreens' HAPI FHIR server), and it covers key concepts like data integrity,
performance, and scalability, showing that you consider both the immediate and long-term
impact of schema design.

Ques%on: how do you approach slow query detec%on, crea%ng and upda%ng indexes,
sequences in PostgreSQL, how do you op%mize and refactor complex and nested queries in
SQL or using ORM when you work on your projects?

Answer: When it comes to slow query detec%on, indexing, and op%mizing complex queries in
PostgreSQL, my approach is methodical and data-driven to ensure op%mal performance,
scalability, and maintainability. Here's how I tackle these challenges:

1. Slow Query Detec%on:

• Use of EXPLAIN and EXPLAIN ANALYZE:
I start by analyzing slow queries using EXPLAIN and EXPLAIN ANALYZE. These tools
help me understand how PostgreSQL executes a query, the order of opera;ons, and
where the bo[lenecks lie (e.g., sequen;al scans, missing indexes, or inefficient joins).

◦ For example, while working on large-scale data processing with 1010data, I used
these tools to iden;fy slow queries when fetching data from large tables and to
op;mize them by adding the right indexes or restructuring the queries.

• pg_stat_statements:
I also rely on the pg_stat_statements extension to track query performance over ;me.
This provides insights into query frequency and execu;on ;mes, helping me iden;fy
frequently executed slow queries that may need op;miza;on.

• Profiling and Monitoring:
In produc;on environments, I use monitoring tools like Datadog, Prometheus, or AWS
RDS Performance Insights to set up alerts on long-running queries. This helps detect and
address performance degrada;on in real-;me.

2. Crea%ng and Upda%ng Indexes:

• Targeted Indexing:
Based on the results from EXPLAIN and the profiling tools, I create indexes on
frequently queried columns, especially those involved in JOINs, WHERE clauses, and
sor;ng opera;ons. I make sure the indexes are selec;ve enough to provide performance
gains without adding overhead for writes.

◦ For instance, in the Walgreens HAPI FHIR server integra%on, I created indexes on
resource iden;fiers and ;mestamps to speed up searches and aggrega;ons
without nega;vely affec;ng performance.

• Regular Index Maintenance:
I regularly monitor index health using tools like pg_stat_user_indexes to check for
unused or redundant indexes. I also periodically reindex tables, especially when there is
high churn in data, to reduce index bloat and maintain efficient performance.

• Par%al and Composite Indexes:
For large datasets where full-indexing would be inefficient, I create par%al indexes (e.g.,
indexing only rows that meet specific condi;ons) and composite indexes to handle
mul;-column filtering more efficiently.

3. Handling Sequences:

• Sequence Management:
I make sure that sequences are used efficiently, especially when working with primary
keys or auto-incremen;ng fields. I oien set CACHE values on sequences for faster
retrieval of values and ensure they are synchronized with the system, especially when
there is replica;on involved.

◦ For instance, in mul;-node systems, I ensure that sequences are not reused
across nodes, which could cause data integrity issues, by using separate
sequence generators or par;;oned sequences.

• Op%mizing Sequence Usage:
When working with high-throughput systems, I some;mes use bigint sequences to
avoid collisions or gaps. Addi;onally, I adjust the increment values for sequences to
be[er match the system's scale and requirements.

4. Op%mizing and Refactoring Complex/Nested Queries:

• Simplify Subqueries and CTEs:
I first focus on simplifying complex subqueries and Common Table Expressions (CTEs).
Oien, breaking down nested queries into temporary tables or materialized views can

dras;cally improve readability and performance. If possible, I convert CTEs into inline
views or join opera;ons to avoid repeated execu;on of the same subquery.

◦ For example, during a data pipeline op;miza;on at 1010data, I refactored a
deeply nested query involving mul;ple CTEs by moving repe;;ve calcula;ons
into temp tables, significantly reducing execu;on ;me.

• Avoid N+1 Query Problems:
When using ORMs, I avoid N+1 query issues by leveraging eager loading or pre-fetching
related data. For example, when working with Django ORM or SQLAlchemy, I ensure
that related models are fetched in a single query using .select_related()
or .joinedload(), rather than querying the database mul;ple ;mes.

• Op%mize Joins:
I ensure that joins are done in the most efficient order, leveraging indexed columns. I
oien rewrite queries to reduce unnecessary joins and filter early in the query to
minimize the amount of data being processed.

◦ In my work with AWS RDS, I also ensure that joins are leveraging the appropriate
indexes and use hash joins or merge joins when the query planner deems it
appropriate for large datasets.

5. Tools and Best Prac%ces:

• SQL Tuning:
I use tools like pgBadger for log analysis and pg_stat_ac%vity to monitor ac;ve queries.
Addi;onally, for automated performance tuning, I use tools like pgTune to help
configure PostgreSQL selngs for op;mal query execu;on.

• Refactor for Readability and Maintainability:
Whenever possible, I refactor queries to improve readability and maintainability. This
means breaking down long, complex SQL queries into smaller, logical steps and
documen;ng the reasoning behind any complex SQL logic.

By leveraging tools like EXPLAIN, op%mizing indexes and sequences, simplifying queries, and
using best prac%ces for data handling and ORM, I ensure that the database remains efficient,
scalable, and maintainable as it grows."

This answer combines prac;cal examples, tools, and techniques you’ve used in your experience,
especially around PostgreSQL, indexing, sequences, and complex queries.

Ques%on: How do you evaluate the impact of architectural changes?

Answer: When evalua%ng the impact of architectural changes, I take a comprehensive
approach to assess both the short-term and long-term effects across mul%ple areas of the
system. Here’s how I approach it:

1. Define the Problem and Objec%ves:

• First, I clarify the goals of the architectural change. What problem are we trying to
solve? Is it performance, scalability, maintainability, or a new feature requirement? This
helps ensure that the change aligns with the overall business and technical objec;ves.
For example, when I was designing an observability pla^orm for Legend Energy
Advisors, the architectural changes aimed to improve real-%me data processing and
analy%cs, and I carefully considered how the change would affect the scalability and the
ease of monitoring.

2. Iden%fy Affected Areas:

• I perform a thorough impact analysis to iden;fy all the parts of the system that may be
impacted by the change. This includes:

◦ Data flow and integra%ons: Will the change impact data pipelines, like the one I
worked on integra;ng 1010data with Walgreens' HAPI FHIR server?

◦ Performance: Does the change introduce poten;al bo[lenecks or affect query
performance? I use tools like EXPLAIN in PostgreSQL and CloudWatch in AWS to
evaluate any new performance bo[lenecks.

◦ Scalability: Will the change affect the system's ability to scale? For instance,
adding a new service in a microservices architecture may impact how services
communicate or how much traffic each service handles.

◦ Maintainability: Does the change introduce more complexity that could hinder
long-term maintainability? I assess whether the change follows established
architectural principles like modularity and loose coupling.

3. Model and Simulate:

• I oien use simula%on or modeling tools (e.g., load tes;ng in AWS or stress tes;ng
through JMeter) to evaluate how the change would perform under load. This helps
iden;fy poten;al issues before they affect produc;on systems. In projects like the data
pipeline integra;on I worked on, I simulated traffic and ensured that the architectural
changes would meet performance standards.

4. Consider Stakeholders and Dependencies:

• I consider all relevant stakeholders—both technical and non-technical—who could be
impacted by the change. This includes product teams, DevOps, security, and compliance.
For example, when designing HIPAA-compliant data pipelines, I collaborated with
security and compliance teams to assess the architectural changes for regulatory impact.

• Addi;onally, I map out any dependencies that may be impacted. For instance, if adding
a new feature to the API introduces a breaking change, how will that impact
downstream systems and consumers of the API?

5. Es%mate the Risk:

• I assess the risk associated with the change, especially when introducing significant
architectural shiis. For example, when integra;ng third-party services (like FHIR in the
Walgreens integra;on), there’s always the risk of introducing integra;on failures. I
mi;gate this by designing fallback mechanisms and redundancy (e.g., via circuit
breakers or retries).

6. Perform a Cost-Benefit Analysis:

• I evaluate the costs (;me, resources, complexity) versus the benefits (performance
improvements, new func;onality, easier maintenance). For example, when moving a
service to a serverless architecture (like AWS Lambda), I assess whether the opera;onal
savings and scalability gains outweigh the poten;al added complexity and cold-start
latency.

7. Use Metrics and Monitoring:

• I put monitoring and observability tools (like Prometheus, Grafana, or Datadog) in place
to track the system before and aier the change. By establishing baseline metrics, I can
measure any devia;ons and quickly address poten;al issues that arise due to the
change.

• In the context of 1010data, for example, I tracked performance metrics and query ;mes
aier introducing new indexes and op;miza;ons to ensure the architectural changes
improved the system.

8. Itera%ve Tes%ng and Feedback:

• I implement changes incrementally in a controlled environment, using techniques like
canary releases or blue/green deployments to minimize the risk of disrup;on. Aier
making the change, I gather feedback from developers and stakeholders, ensuring that
any side effects are captured early in the process.

9. Post-Change Review:

• Aier the architectural change is implemented, I conduct a post-implementa%on review.
This involves evalua;ng the success of the change based on the original goals and
objec;ves and looking for any unintended consequences. I ensure that documenta%on
is updated to reflect the new architecture and that lessons learned are captured for
future reference.

By systema%cally considering the problem, evalua%ng impacted areas, modeling outcomes,
considering risks, and incorpora%ng monitoring, I ensure that architectural changes are well-
veied and aligned with both short-term needs and long-term goals of the organiza%on.

Ques%on: How do you decide between addressing technical debt and delivering new
features?

Answer: Balancing technical debt and delivering new features is a key challenge, and I
approach it by considering both the short-term goals and long-term health of the system.
Here’s how I approach the decision-making process:

1. Understand the Business and Technical Priori%es:

• First, I work closely with product stakeholders, business leaders, and the technical team
to understand the business priori%es and strategic goals. This helps me evaluate how
cri;cal it is to deliver new features versus addressing technical debt. For example, if a
customer-facing feature can generate significant value, I might priori;ze that over
technical debt. But if technical debt is significantly hindering development speed,
scalability, or maintenance, then it becomes a priority.

2. Evaluate the Impact of Technical Debt:

• I assess how much the technical debt is impac%ng development. If technical debt is
crea;ng slowdowns, increasing bug rates, or making future changes more costly (as I
saw during the 1010data and Walgreens HAPI FHIR integra%on), then it might need to
be addressed immediately. However, if technical debt is not immediately causing pain
and is only a concern in the medium term, I may focus on feature development first.

• I also consider where the debt lies. For example, if the debt is in a cri;cal, high-risk area
(like the data pipeline in the HIPAA-compliant system I worked on), it might need to be
priori;zed over adding a new feature, especially if the debt affects security, stability, or
compliance.

3. Balance Long-Term Maintainability with Short-Term Gains:

• I weigh the long-term maintainability of the system against the short-term benefits of
new features. If the system’s architecture is not scalable or maintainable, new features
might add complexity and amplify exis;ng problems, making them harder to maintain.
In these cases, I would priori;ze addressing technical debt. For example, in my work on
observability pla^orms, addressing technical debt around monitoring infrastructure
would enable smoother delivery of future features.

4. Consider the Cost of Change:

• I look at the cost of change to determine whether addressing technical debt will require
significant refactoring or just small incremental improvements. Some;mes small, non-
intrusive changes can reduce the burden of technical debt without hindering progress on
new features. However, if the debt is deeply entrenched (e.g., poor data schema design),
refactoring may require more effort and disrupt feature delivery ;melines, so a careful
plan is needed.

5. Create a Debt Management Strategy:

• I like to implement a technical debt management strategy that involves periodically
addressing small pieces of debt in parallel with new feature development. For example,
when building the data inges%on pipeline, we might break down technical debt tasks
into manageable chunks, incorpora;ng them as part of feature sprints. In doing so, we
can chip away at the debt without overwhelming the team or disrup;ng the business
goals.

6. Use Metrics to Guide Decision-Making:

• I use metrics to inform the decision-making process. For example, I track velocity and
cycle %mes to see if technical debt is slowing us down. If we’re spending too much ;me
dealing with bugs or reworking the same areas, it’s a clear sign that we need to address
the underlying technical debt before introducing more complexity with new features.

7. Assess the Risk of New Features:

• I also evaluate the risk associated with delivering new features in a codebase with
known technical debt. If the debt is manageable and doesn’t significantly impact the
new feature’s quality or delivery speed, I may proceed with feature development.
However, if introducing new features could exacerbate technical debt, I would priori;ze
addressing the debt first to avoid crea;ng bigger issues down the road.

8. Engage with the Team:

• Finally, I involve the team in the decision. Technical debt is oien a team-wide concern,
so I value input from all members to ensure we make informed decisions. By aligning
with the team, we can determine whether there’s a shared understanding of the debt’s
impact and agree on when it’s the right ;me to tackle it.

In conclusion, the decision comes down to balancing short-term feature needs with long-term
system health. I base this decision on the severity of the technical debt, its impact on the
system and team produc%vity, the poten%al for quick wins, and the business priori%es. I
ensure that we don’t sacrifice long-term maintainability for short-term gains and that we
proac%vely manage debt as part of a sustainable development process.

Ques%on: Have you dealt with a situa%on where technical debt caused a significant issue?
What was your approach?

Answer: Yes, I have encountered situa%ons where technical debt created significant issues,
par%cularly in cases where quick, short-term solu%ons were implemented without
considering the long-term impact on scalability and maintainability. One such situa%on
occurred while I was working on a data pipeline integra%on project involving 1010data and
Walgreens’ HAPI FHIR server.

The Situa%on:

In this project, we were tasked with building a HIPAA-compliant data pipeline that integrated
1010data's analy%cs plagorm with Walgreens' health data systems. During the early stages of
development, we priori;zed speed to meet ;ght deadlines, and in doing so, we accumulated
technical debt, especially in the form of hardcoded configura%ons, poor database indexing,
and ad-hoc data transforma%ons. These shortcuts worked fine ini;ally but became a major
problem as we scaled the system and added new features.

As the data pipeline grew and the volume of health data increased, performance issues started
to surface. The data inges;on process slowed down significantly due to lack of proper indexing
and inefficient SQL queries. Addi;onally, the lack of proper data valida%on in our
transforma;ons caused downstream issues in schema consistency, which triggered bugs in
downstream analy;cs. Finally, regulatory requirements for HIPAA compliance became stricter,
which meant we needed to implement stronger security and audi;ng measures, and the
exis;ng architecture couldn’t accommodate these changes without significant refactoring.

My Approach:

1. Priori%ze Issues Based on Impact:

◦ I first worked with the team to iden%fy and priori%ze the most cri;cal issues
caused by technical debt. We focused on addressing performance bo[lenecks
and security compliance first, as they had the highest impact on both business
opera;ons and regulatory compliance. We also assessed the data integrity issues
to ensure that we didn’t miss any cri;cal insights for healthcare analy;cs.

2. Incremental Refactoring:

◦ Instead of trying to solve everything at once, we opted for an incremental
refactoring approach. We started by improving the database schema and
indexing strategies. We iden;fied key queries and op;mized them to reduce
execu;on ;me. For example, complex and nested queries were rewri[en, and
we added the necessary indexes to improve their performance.

◦ We also standardized data valida%on processes to ensure that incoming data
adhered to the correct schema, and we implemented automated tes;ng to catch
errors early in the process.

3. Introduce Monitoring and Observability:

◦ I introduced monitoring tools like Datadog and Prometheus to track
performance metrics, error rates, and the overall health of the pipeline. This
helped us iden;fy issues early on and prevented us from being caught off guard
in produc;on.

◦ For example, aier adding Prometheus for monitoring, we were able to detect
slow queries and unop;mized database calls in real-;me, which allowed us to fix
issues before they impacted downstream analy;cs.

4. Collaborate with Stakeholders:

◦ I ensured that the business stakeholders were aligned with our efforts to address
technical debt. I communicated the trade-offs between adding new features and
refactoring the exis;ng codebase. By showing the long-term benefits of tackling
technical debt—such as improved scalability, be[er performance, and reduced
risk of failure—we were able to get their buy-in and ensure that we allocated
resources for the refactoring work.

◦ Addi;onally, I collaborated with the compliance and security teams to ensure
that the changes we made were aligned with HIPAA requirements, which was a
key part of the project.

5. Adopt Best Prac%ces Going Forward:

◦ Aier addressing the immediate issues, I led the team in adop;ng a technical
debt management strategy going forward. We agreed to make small,
incremental improvements to the codebase as part of every sprint, addressing
debt alongside new feature development. This prevented the accumula;on of
technical debt over ;me and allowed us to maintain a sustainable development
pace.

Outcome:

• Aier the refactoring, we saw a significant improvement in the performance of the data
pipeline, and we were able to meet HIPAA compliance requirements. The integra;on
with Walgreens' HAPI FHIR server became much more stable, and we were able to scale
the system to handle increasing data volumes. The system’s reliability and
maintainability improved, and we were able to introduce new features more quickly
without worrying about the impact of technical debt.

In conclusion, my approach to addressing significant technical debt is to priori%ze and address
the most impacgul issues first, adopt an incremental and sustainable refactoring approach,
collaborate with stakeholders, and ensure that we maintain long-term system health through
con%nuous improvement.

Ques%on: How do you approach designing a new feature? Example: "Describe how you would
design a HIPAA-compliant pipeline for data inges%on and analy%cs.

Answer: When designing a new feature, especially a complex one like a HIPAA-compliant data
pipeline for inges%on and analy%cs, I follow a structured approach that includes
understanding the requirements, defining the architecture, ensuring compliance, and
op%mizing for scalability and maintainability. Here's how I would approach this specific task:

1. Understand the Requirements and Constraints:

• Business Requirements: I would start by understanding the specific business goals for
the data pipeline. In this case, the objec;ve is to ensure seamless data inges%on,
analy%cs, and compliance with HIPAA regula%ons. I would need to understand the

types of data (e.g., electronic health records, lab results, etc.), the stakeholders, and how
the data will be used (e.g., analy;cs, repor;ng, or machine learning).

• Compliance Requirements: Since we’re dealing with healthcare data, HIPAA compliance
is a priority. I would review the specific requirements, including data encryp%on (in
transit and at rest), audi%ng, access control, and data anonymiza%on. This would
involve close collabora;on with legal and security teams to ensure we're mee;ng the
necessary guidelines.

2. Define the Architecture:

• Inges%on Layer: I would begin by defining the data inges%on layer, where raw data is
collected from various sources (e.g., external systems, databases, APIs like Walgreens
HAPI FHIR). For HIPAA compliance, I would ensure that data is transmi[ed securely via
HTTPS or other secure protocols, and I would implement encryp%on in transit.

• Processing and Transforma%on Layer: Once the data is ingested, it needs to be
processed and transformed into a usable format for analy;cs. I would design the
pipeline to ensure that the data is cleaned, validated, and structured correctly for
downstream analysis. This would involve selng up proper data valida%on and error
handling mechanisms to ensure data integrity.

◦ For example, if we were processing FHIR data from Walgreens, I would create a
transforma;on step to convert data into a standardized format that can be used
across different systems and aligned with business needs. This would be done
using ETL (Extract, Transform, Load) processes, ensuring the transformed data
complies with HIPAA's minimum necessary rule.

3. Ensure Security and Compliance:

• Data Encryp%on: I would implement encryp%on at rest (using AWS KMS, for example)
and encryp%on in transit (using SSL/TLS) to protect sensi;ve health data. Data should
only be decrypted by authorized users, and any keys should be stored securely.

• Access Control: Implement role-based access control (RBAC) using IAM (Iden;ty and
Access Management) to ensure only authorized users can access sensi;ve data. I would
also leverage mul%-factor authen%ca%on (MFA) for addi;onal protec;on.

• Audit Trails: For HIPAA compliance, it is essen;al to maintain comprehensive audit logs
for all ac;ons performed on the data pipeline, including data inges;on, transforma;on,
and access to data. These logs would be stored securely and reviewed regularly.

4. Design for Scalability and Performance:

• Scalable Infrastructure: Given the high volume of healthcare data, I would design the
pipeline to scale horizontally. For instance, I would leverage AWS services like Kinesis or
S3 for data inges;on, and EMR or AWS Glue for large-scale data processing. The
architecture would allow scaling up as the data volume increases without affec;ng
performance.

• Batch and Stream Processing: Depending on the latency requirements, I would use
batch processing for periodic analysis (e.g., daily reports) and stream processing (using
something like Kaja or AWS Kinesis) for real-;me data inges;on and processing.

• Data Storage and Querying: For data storage, I would use AWS S3 for raw data and
RedshiT or RDS for structured data. For faster querying and analy;cs, I would
implement indexing, par%%oning, and caching mechanisms to ensure the system can
handle complex queries efficiently.

5. Tes%ng and Monitoring:

• Test for Compliance: I would ensure that data is tested for HIPAA compliance by running
automated tests that verify encryp;on, access control, and data integrity. I would also
ensure that data handling procedures are regularly audited to ensure compliance.

• End-to-End Tes%ng: Implement both unit tests and integra%on tests to ensure that each
component (data inges;on, transforma;on, storage, etc.) works correctly and complies
with system requirements.

• Monitoring and Alerts: Set up real-%me monitoring for the pipeline using tools like
Datadog or Prometheus to track performance, errors, and poten;al bo[lenecks. I would
also implement aler;ng mechanisms to no;fy the team of any failures or viola;ons in
compliance standards.

6. Iterate and Op%mize:

• As the system grows, I would con;nuously monitor performance and op%mize the
pipeline. For example, if the data volume increases or if certain parts of the pipeline are
iden;fied as bo[lenecks, I would refactor the architecture to handle the load more
efficiently. This may include implemen;ng be[er indexing strategies or op;mizing data
transforma;on processes.

7. Documenta%on and Knowledge Sharing:

• I would ensure comprehensive documenta;on for all parts of the system, including
architecture diagrams, data flow diagrams, compliance guidelines, and troubleshoo;ng
procedures. This ensures that the team can maintain and extend the system over ;me
without compromising security or compliance.

In conclusion, my approach to designing a HIPAA-compliant data inges%on and analy%cs
pipeline would focus on ensuring compliance with strict regulatory requirements, while also
designing for scalability, performance, and maintainability. I would priori%ze security, robust
tes%ng, and monitoring to ensure that the system is both reliable and auditable over the long
term.

Ques%on: How do you ensure your design is scalable and future-proof?

Answer: Ensuring that a design is scalable and future-proof is a crucial part of soTware
architecture, especially in systems that need to handle growing data volumes or increasing
user loads over %me. I approach scalability and future-proofing through several key prac%ces,
drawing from my experience with building robust and flexible systems. Here's how I approach
it:

1. Understand the Requirements and Growth Projec%ons:

• An%cipate Growth: Before designing a system, I work closely with stakeholders to
understand both current and future requirements. This includes understanding how data
volume, user ac;vity, and traffic might scale over ;me. By predic;ng the growth
trajectory, I can design a system that accommodates future needs without requiring
complete redesigns.

• Scalability Goals: I define clear scalability goals early on, such as how much data the
system needs to handle per second or how many concurrent users it should support.
These metrics help inform decisions about architecture and design pa[erns.

2. Leverage Scalable Cloud Services:

• Cloud-Na%ve Solu%ons: I prefer cloud-based architectures (e.g., AWS, GCP, Azure) to
ensure that my systems can scale with ease. Cloud services like AWS EC2, Lambda, S3,
Kinesis, and RDS allow me to scale compute and storage resources elas;cally based on
demand. Using these services enables me to design systems that can scale horizontally
(e.g., adding more servers or containers) or ver;cally (e.g., upgrading resources as
needed).

• Auto-Scaling and Load Balancing: I design systems with auto-scaling and load balancing
in mind. For example, when using services like Elas%c Load Balancer (ELB) and Auto
Scaling Groups (ASG) in AWS, I can automa;cally adjust resources based on incoming
traffic, ensuring that the system remains responsive under increased load.

3. Modular and Microservices Architecture:

• Modular Design: I design components and services to be modular and loosely coupled.
By breaking down the system into smaller, independently deployable modules, each of
which can scale independently, I ensure that future changes or addi;ons can be made
without affec;ng the en;re system.

• Microservices: When appropriate, I design systems using microservices to ensure that
each service can be scaled independently. This helps with both scaling and future-
proofing because individual services can be upgraded or replaced without disrup;ng the
rest of the system.

4. Use of Caching and Performance Op%miza%on:

• Caching Layers: To reduce load on cri;cal systems and databases, I implement caching
layers using tools like Redis or Memcached. Caching frequently accessed data can

significantly improve performance and reduce the need for scaling up resources
unnecessarily.

• Op%mizing Queries and Data Access: When working with databases, I ensure that
queries are op;mized, and indexes are used effec;vely to avoid performance
bo[lenecks. Addi;onally, I use denormaliza%on where needed to improve query
performance, especially when the data model evolves over ;me.

5. Design for Flexibility and Extensibility:

• API-First Design: By designing APIs with extensibility in mind, I ensure that new features
can be added in the future without breaking exis;ng func;onality. I use best prac;ces
like versioning and backward compa%bility in API design to ensure that the system can
evolve without breaking exis;ng clients.

• Event-Driven Architecture: For systems that require future-proofing, I oien rely on
event-driven architectures. By decoupling services with event-driven pa[erns (e.g.,
using Kaja or AWS SNS/SQS), I allow for easy addi;on of new consumers and producers
without altering the core logic of exis;ng components.

6. Monitoring and Observability:

• Real-Time Monitoring: Scalability is not only about designing systems but also about
con;nuously monitoring performance. I implement monitoring tools like Prometheus,
Datadog, and Grafana to track system performance and detect poten;al bo[lenecks
early on.

• Logging and Aler%ng: Selng up proper logging and aler%ng mechanisms helps in
iden;fying performance issues and scaling challenges proac;vely. Tools like
Elas%csearch, Logstash, and Kibana (ELK) or AWS CloudWatch enable detailed insights
into the health of the system.

7. Infrastructure as Code (IaC):

• Infrastructure Management: I use Infrastructure as Code (IaC) tools like Terraform or
Pulumi to define, provision, and manage infrastructure. This ensures that the
infrastructure can easily be reproduced, scaled, or updated as needed, making the
system future-proof and adaptable to changes in technology.

8. Design for Maintainability:

• Code Quality and Tes%ng: Scalable systems need to be maintainable over ;me. I enforce
high standards for code quality, thorough unit and integra;on tes;ng, and clear
documenta;on. This ensures that as the team grows or new features are added, the
system remains understandable, testable, and adaptable.

• Refactoring and Technical Debt: I proac;vely manage technical debt and refactor
components that are becoming a bo[leneck. This ensures that the system remains
efficient and scalable in the long term.

9. Capacity Planning and Load Tes%ng:

• Load Tes%ng: I perform load tes%ng to simulate real-world traffic and assess how well
the system scales under load. Tools like JMeter, Gatling, or cloud-na;ve services (e.g.,
AWS Performance Tes%ng) help ensure the system can handle expected load increases.

• Capacity Planning: I ensure that the system is built to handle peak loads by planning
capacity ahead of ;me. For example, I might over-provision during expected busy
periods or have auto-scaling rules in place to handle sudden spikes in demand.

10. Con%nuous Integra%on and Con%nuous Deployment (CI/CD):

• CI/CD Pipelines: I set up robust CI/CD pipelines that allow for seamless deployments
and updates to the system. This ensures that new features, performance op;miza;ons,
and scaling measures can be rolled out efficiently and without risk.

In summary, to ensure a design is scalable and future-proof, I focus on understanding the
growth trajectory, leveraging cloud-na%ve solu%ons, designing for modularity and
extensibility, and op%mizing for performance and monitoring. By following these principles, I
ensure that the system remains flexible, responsive to future requirements, and capable of
handling increased load as the business grows.

Ques%on: What are your best prac%ces for securing APIs on AWS?

Answer: Securing APIs on AWS is a cri%cal aspect of building reliable and secure applica%ons,
especially when dealing with sensi%ve data and services. I follow a mul%-layered approach to
ensure that APIs are secure and follow AWS best prac%ces. Here's how I secure APIs on AWS:

1. Use AWS API Gateway with AWS IAM Authen%ca%on:

• API Gateway: I prefer using Amazon API Gateway to create, manage, and secure APIs. It
provides na;ve integra;ons with AWS services, as well as built-in security features.

• IAM Authen%ca%on: I implement IAM (Iden%ty and Access Management) roles and
policies to control who has access to the APIs. This ensures that only authorized users or
systems can access certain resources.

• Custom Authorizers: I use Lambda-based custom authorizers to implement custom
authoriza;on logic (e.g., based on JWT tokens, OAuth, etc.).

2. Use HTTPS (SSL/TLS) for Encryp%on in Transit:

• I enforce HTTPS by using SSL/TLS cer;ficates for all API endpoints. This ensures that data
is encrypted in transit between clients and the API.

• AWS provides easy integra;on with AWS Cer%ficate Manager (ACM) for managing SSL
cer;ficates, which helps ensure the API traffic is encrypted and secure from man-in-the-
middle a[acks.

3. Implement API Rate Limi%ng and Throiling:

• To prevent abuse and DDoS aiacks, I configure rate limi%ng and throiling on API
Gateway using AWS WAF (Web Applica%on Firewall) and API Gateway's built-in rate
limi;ng features. This ensures that the API only serves a certain number of requests per
minute or second, protec;ng it from being overwhelmed by excessive traffic.

4. Use OAuth 2.0 / OpenID Connect for Authen%ca%on and Authoriza%on:

• For APIs that require user authen;ca;on, I integrate with AWS Cognito to provide
OAuth 2.0 or OpenID Connect authen;ca;on. This allows me to securely manage user
iden;;es and integrate with third-party iden;ty providers (e.g., Google, Facebook, or
enterprise iden;ty providers).

• Using Cognito User Pools helps offload the complexity of user management and
authen;ca;on to a secure, scalable service.

5. Ensure API Authoriza%on Using Fine-Grained Permissions:

• IAM Roles and Policies: I leverage IAM roles and policies to apply fine-grained
authoriza;on to API requests, ensuring that each user or service has the minimum
required access. For example, services like AWS Lambda and EC2 can interact with APIs
based on specific roles and permissions.

• OAuth Scopes and Claims: If using OAuth tokens, I ensure that the API validates the
scope and claims in the tokens to enforce the correct level of access to specific
endpoints.

6. Use AWS WAF for Web Applica%on Firewall Protec%on:

• I use AWS WAF to protect APIs from common web exploits and a[acks like SQL injec;on,
cross-site scrip;ng (XSS), and cross-site request forgery (CSRF). By crea;ng custom rules,
I can block malicious traffic and ensure that only legi;mate requests make it to the API.

7. Enable Logging and Monitoring with CloudWatch:

• I enable AWS CloudTrail and AWS CloudWatch for logging all API ac;vity. This helps
monitor and record API access, providing audit trails to detect any unauthorized access
a[empts or abnormal behavior.

• CloudWatch Logs and CloudWatch Alarms can be used to detect any suspicious ac;vity
(e.g., an abnormal number of failed login a[empts) and trigger alerts.

8. Use API Keys and Secrets Management:

• I use API keys for iden;fying and tracking API consumers, ensuring that only authorized
clients can access the API. These keys are securely stored using AWS Secrets Manager or
AWS Systems Manager Parameter Store for sensi;ve informa;on like database
creden;als, third-party service keys, and more.

• I ensure API keys are rotated regularly to reduce the risk of compromise and use
encryp;on to secure sensi;ve data.

9. Implement Input Valida%on and Sani%za%on:

• I validate and sani;ze all incoming data to avoid injec;on a[acks, such as SQL injec;ons
or command injec;ons. Input valida;on can be implemented in Lambda func%ons or
within the API Gateway itself, ensuring that only valid and well-formed requests are
processed by the API.

• I use AWS Lambda's input valida;on capabili;es to reject invalid or malicious inputs
before they reach the backend services.

10. Leverage VPCs and Private Endpoints:

• For APIs that need to be protected from public access, I host them inside an Amazon
VPC (Virtual Private Cloud) and restrict access to certain IP ranges or VPC endpoints.

• VPC endpoints (like AWS PrivateLink) allow private communica;on between VPCs and
services without exposing them to the internet, providing another layer of security for
sensi;ve APIs.

11. Ensure Secure Data Storage:

• I use AWS KMS (Key Management Service) for encryp;ng sensi;ve data at rest, such as
in S3 buckets, DynamoDB, and RDS databases. KMS provides centralized key
management and automa;c encryp;on, ensuring that data is secure both in transit and
at rest.

12. Enforce Least Privilege Principle:

• When designing APIs, I enforce the least privilege principle, ensuring that API
consumers and internal services have only the minimum required permissions to
perform their tasks. This minimizes the risk of exposure and reduces the poten;al
impact of a security breach.

13. Regular Security Audits and Penetra%on Tes%ng:

• I regularly conduct security audits and penetra%on tes%ng to iden;fy poten;al
vulnerabili;es in the API design and configura;on. AWS offers tools like Inspector and
Trusted Advisor to help assess and improve the security posture of the API and its
surrounding infrastructure.

14. Use of Mul%-Factor Authen%ca%on (MFA):

• For APIs that require higher security, I implement Mul%-Factor Authen%ca%on (MFA) to
ensure that sensi;ve ac;ons are protected. This can be achieved using AWS Cognito or
custom MFA solu;ons based on client needs.

In summary, securing APIs on AWS involves using a combina%on of AWS na%ve services like
API Gateway, Cognito, WAF, IAM, and CloudTrail to ensure that the API is well-protected
against unauthorized access, abuse, and common security vulnerabili%es. By following these
best prac%ces, I can secure the APIs at both the network and applica%on layers and provide
robust protec%on against a range of threats.

Ques%on: How would you design a scalable and resilient architecture on AWS? Example:
"How would you use S3, Lambda, and API Gateway to handle a high-traffic data inges%on
pipeline?

Answer: Designing a scalable and resilient architecture on AWS for a high-traffic data
inges%on pipeline using S3, Lambda, and API Gateway requires careful considera%on of
performance, scalability, and fault tolerance. Below is an approach based on these AWS
services:

1. Overview of the Architecture:

• The architecture leverages API Gateway for handling incoming HTTP requests, AWS
Lambda for processing data asynchronously, and S3 for durable and scalable storage of
incoming data.

• The key focus is to ensure the architecture can handle high traffic, scale automa;cally
based on load, and be resilient to failures.

2. Step-by-Step Architecture Design:

Step 1: API Gateway to Handle Inges%on Requests

• API Gateway will act as the entry point for the data inges;on pipeline. It will expose
HTTP endpoints where clients can send data.

• For high traffic, I will enable rate limi%ng and throiling on API Gateway to prevent
abuse and ensure that it can handle bursts of traffic without being overwhelmed.

• Authen%ca%on: I will implement AWS IAM roles, API keys, or OAuth (using Cognito or
custom authorizers) to secure the endpoints and ensure that only authorized users or
services can push data into the system.

• Request Valida%on: API Gateway will validate the incoming request (e.g., check for the
correct payload format, size, and required fields) before forwarding it to the backend
Lambda func;on for processing.

Step 2: Lambda to Process Incoming Data

• AWS Lambda func;ons will be triggered by API Gateway upon receiving new data.
• The Lambda func;on will be responsible for performing lightweight data processing

tasks such as:
◦ Data valida;on (e.g., checking required fields, sani;zing inputs).
◦ Metadata extrac;on (e.g., iden;fying source, ;mestamp, or type of data).
◦ Transforma;on and enrichment (if required).

• To scale Lambda effec;vely, I will configure the func;on with the necessary memory
seyngs and set concurrency limits to avoid overloading downstream services.

• Error Handling and Retries: I will configure Lambda dead-leier queues (DLQs) to
capture failed invoca;ons, ensuring that failed requests can be retried later or
inves;gated. Exponen%al backoff and retry logic can be set up for transient failures.

Step 3: Store Raw Data in S3

• Aier the Lambda func;on processes the data, it will store the raw data in Amazon S3
for long-term storage, enabling future access, analy;cs, or audi;ng.

• S3 provides high availability and durability, ensuring that data is not lost, even in the
case of failures.

• To op%mize for performance and cost, I will use S3 lifecycle policies to manage the
reten;on of data over ;me, transi;oning older data to S3 Glacier or S3 Intelligent-
Tiering for cost op;miza;on.

• S3 Event No%fica%ons: I will set up S3 Event No%fica%ons to trigger addi;onal Lambda
func;ons or services (e.g., SQS, SNS) when new data is added, enabling downstream
processing, analy;cs, or no;fica;ons.

Step 4: Scalability and Fault Tolerance

• API Gateway scales automa;cally to handle increasing traffic, adjus;ng based on
incoming load.

• Lambda automa;cally scales to handle a growing number of events, allowing the system
to process thousands of events per second without manual interven;on.

• S3 offers virtually unlimited scalability and is designed to handle high-throughput read/
write opera;ons, ensuring data is reliably stored at any scale.

Step 5: Resilience Design Considera%ons

• Mul%ple Availability Zones (AZs): Both Lambda and API Gateway are inherently
designed to run across mul;ple AZs, ensuring high availability.

• Retry Logic: For Lambda func;ons or other services like SNS/SQS that process data
downstream, I will implement retry mechanisms with backoff strategies to ensure data
is not lost and can be processed when systems recover from transient issues.

• Monitoring and Aler%ng: I will use CloudWatch for monitoring Lambda performance
and API Gateway metrics (e.g., latency, request count, error rates) and CloudWatch
Alarms to trigger alerts in case of failures or performance degrada;on.

• Auto-Scaling: For addi;onal components (e.g., if there’s a need for EC2 instances or
Fargate tasks in the future), I will configure Auto Scaling based on CloudWatch metrics
to ensure that the system can scale horizontally to meet demand.

• Event-Driven Architecture: The architecture is designed to be event-driven, with S3 as
the persistent store and Lambda or other services reac;ng to S3 events. This ensures
decoupling of components, making the system more resilient and flexible in the face of
failures.

Step 6: Cost Efficiency Considera%ons

• Serverless: The serverless nature of Lambda and API Gateway ensures that I only pay for
the compute power and API calls I use, which can significantly reduce costs compared to
provisioning dedicated resources.

• S3: S3 offers cost-effec;ve storage and integrates well with other services for efficient
long-term data storage management.

Step 7: Example Flow:

1. A client makes a POST request to API Gateway, sending data to the inges;on endpoint.
2. API Gateway triggers a Lambda func%on that processes the incoming data and stores it

in S3.
3. Aier storing data, S3 triggers another Lambda func;on or a downstream service for

further processing (e.g., analy;cs or data aggrega;on).
4. Lambda processes the data asynchronously and performs addi;onal logic (e.g.,

aggrega;ng, transforming) as needed.
5. Finally, S3 provides a durable, scalable, and cost-effec;ve storage solu;on for data

persistence.
3. Security Considera%ons:

• IAM Roles: I will ensure that both API Gateway and Lambda have the appropriate IAM
roles with the least privilege required to interact with S3 and other resources.

• Data Encryp%on: I will use S3 encryp%on (server-side encryp;on with KMS or S3-
managed keys) to protect sensi;ve data at rest and HTTPS for encrypted communica;on
over the network.

• API Security: I will implement API keys, OAuth, or IAM authen%ca%on in API Gateway to
ensure secure access to the API.

Ques%on: Which AWS services have you used, and how? Example: "Describe how you used
EMR for processing IoT data or RedshiT for analy%cs.

Answer:

AWS Services I've Used and How

1. Amazon EMR for Processing IoT Data

I’ve extensively used Amazon EMR to process large-scale IoT data in real-;me for analy;cs. In
one of the projects, we were collec;ng real-;me sensor data from various IoT devices deployed
in industrial environments. The data included environmental factors like temperature, humidity,
and pressure, and was being ingested into a streaming pipeline.

How I Used EMR:

• Data Inges%on: IoT data from devices was streamed using AWS Kinesis or Apache Kaja,
and then ingested into Amazon S3 for ini;al storage.

• Data Processing: We used Apache Spark on EMR for large-scale batch and real-;me
processing of this data. Spark’s structured streaming capabili;es were used for real-;me
processing, aggrega;ng data from various sensors, and performing necessary
transforma;ons.

◦ For example, we used Spark SQL to process structured data and perform
aggrega;ons, filtering, and enrichment.

• Scaling: We leveraged the auto-scaling capabili;es of EMR clusters, which allowed us to
dynamically add or remove nodes based on workload demands, ensuring cost-effec;ve
scaling.

• Integra%on: The processed data was then stored back in Amazon S3 for long-term
storage, and from there, further analy;cs or transforma;ons could be done.

Outcome: Using EMR allowed us to handle large volumes of IoT data in a scalable way, perform
real-;me analy;cs, and store the processed results efficiently.

2. Amazon RedshiT for Analy%cs

In another project, I used Amazon RedshiT for building a data warehouse to enable business
intelligence and analy;cs. The data warehouse was used to consolidate data from mul;ple
sources, including transac;onal systems and IoT sensor data, for historical analysis and
repor;ng.

How I Used RedshiT:

• Data Loading: We used AWS Glue to automate the ETL process, extrac;ng data from
various S3 buckets and loading it into RedshiT. For large datasets, we used the COPY
command to efficiently load data from S3 into Redshii tables.

• Data Transforma%on: Once the data was in RedshiT, we ran complex SQL queries to
join different data sources, perform aggrega;ons, and calculate KPIs such as average
temperature over ;me, sensor health status, and usage metrics.

• Performance Op%miza%on: To ensure op;mal performance for large queries, we used
sort keys and distribu%on keys to organize the data efficiently in Redshii. Addi;onally,
materialized views were used to pre-compute expensive queries and speed up analy;cs.

• Integra%on with BI Tools: The data in RedshiT was used by Power BI and Looker for
building visual dashboards and reports. Redshii’s seamless integra;on with BI tools
helped create ac;onable insights for business users in real-;me.

Outcome: RedshiT allowed us to consolidate large amounts of structured and semi-structured
data into a centralized data warehouse, which was fast, cost-effec;ve, and scalable for analy;cs.

3. Addi%onal AWS Services I Have Used:

• Amazon S3: For storing raw data (e.g., IoT sensor data, logs, and processed results) and
archiving large datasets for long-term durability. I’ve also used S3 Event No%fica%ons to
trigger Lambda func;ons for post-processing tasks.

• AWS Lambda: I have designed serverless workflows with Lambda to trigger data
transforma;ons and process data in real-;me or in batch without managing any
infrastructure.

• Amazon RDS (PostgreSQL): I used RDS for opera;onal databases to manage
transac;onal data, implemen;ng features like automated backups, scaling, and security.

• AWS Glue: For ETL processes, transforming data from different sources, and loading it
into Redshii for analy;cs. It simplifies data cataloging and schema management across
data lakes.

• AWS Kinesis: Used for inges;ng streaming data from IoT devices, real-;me sensor data,
and logs, which was processed using services like Lambda or EMR.

• AWS Step Func%ons: For orchestra;ng mul;ple Lambda func;ons or other services in
workflows. This is par;cularly useful for building complex event-driven pipelines.

• Amazon QuickSight: I have leveraged QuickSight to build dashboards and visualiza;ons
from Redshii data for internal teams and customers.

In Summary:

I’ve used a range of AWS services to process and analyze data at scale. EMR was instrumental in
processing large volumes of IoT data with Spark, while RedshiT provided a scalable and
performant solu;on for data analy;cs and business intelligence. Services like S3, Lambda, Glue,
and Step Func%ons helped in orchestra;ng data pipelines, ensuring scalability, security, and
resilience throughout the en;re data lifecycle.

Ques%on: How do you priori%ze non-func%onal requirements like security, availability, and
observability?

Answer: How I Priori%ze Non-Func%onal Requirements Like Security, Availability, and
Observability

When designing systems, non-func;onal requirements (NFRs) like security, availability, and
observability are crucial for building robust, reliable, and scalable solu;ons. These NFRs guide
the design and opera;on of the system to ensure it meets the desired level of performance and
resilience. Here’s how I priori;ze and approach them:

1. Security

Security is always a top priority, especially in industries dealing with sensi;ve data like
healthcare, finance, and IoT.

Approach:

• Data Protec%on: I implement strong encryp;on prac;ces both in transit (e.g., using TLS
for communica;on) and at rest (e.g., using AES-256 for storing sensi;ve data). For cloud

environments, I ensure that data is encrypted using built-in encryp;on mechanisms like
AWS KMS.

• Authen%ca%on & Authoriza%on: I design systems with least privilege access in mind,
leveraging technologies such as OAuth, JWT, and OpenID Connect to secure user access.
For internal services, I enforce strict role-based access control (RBAC) and use services
like AWS IAM to define granular permissions.

• Vulnerability Management: I priori;ze keeping soiware dependencies up-to-date, using
tools like OWASP Dependency-Check or Snyk to iden;fy vulnerabili;es in dependencies.
Regular security audits and penetra;on tests are performed to iden;fy and mi;gate
poten;al a[ack vectors.

• Network Security: For cloud systems, I implement VPCs, security groups, and NACLs to
isolate sensi;ve resources and restrict unauthorized access. I also use Web Applica%on
Firewalls (WAFs) and DDoS protec%on to prevent external a[acks.

Security Considera%on: Security requirements are oien integrated from the beginning and
throughout the en;re soiware lifecycle. I typically perform risk assessments and threat
modeling during the design phase to an;cipate poten;al security concerns.

2. Availability

Availability ensures that the system is opera;onal and can handle traffic, even during failures or
under high load.

Approach:

• High Availability: I design systems to be fault-tolerant by deploying applica;ons across
mul;ple availability zones or regions (in the case of cloud-based systems). For example, I
use AWS Elas%c Load Balancer (ELB) to distribute traffic across healthy instances and
Auto Scaling Groups to dynamically adjust capacity based on load.

• Failover Mechanisms: For cri;cal services like databases, I use replica;on strategies
(e.g., Mul%-AZ RDS for automa;c failover or Redis Sen%nel for managing Redis clusters).
I also set up backup processes, like snapshots and cross-region replica;on, to minimize
the risk of data loss.

• Redundancy: I ensure there are redundant systems in place for mission-cri;cal
applica;ons. For example, in a data inges;on pipeline, I would use Amazon SQS or Kaja
as a durable buffer to ensure no data is lost even if downstream systems fail.

• Monitoring and Alerts: Availability is closely linked to observability. I set up proac;ve
monitoring using tools like Prometheus, Datadog, and CloudWatch, ensuring that I can
detect and address issues before they affect the end-user experience.

Availability Considera%on: Availability and fault tolerance are baked into the architecture by
using cloud-na;ve services and ensuring all components have clear failure boundaries with
automa;c recovery.

3. Observability

Observability allows you to understand what is happening inside the system and catch issues
early.

Approach:

• Metrics Collec%on: I use Prometheus for monitoring and collec;ng metrics on
applica;on performance, resource u;liza;on, and service health. For example, tracking
response %mes, error rates, and CPU/memory usage is cri;cal to iden;fy bo[lenecks or
poten;al failures.

• Centralized Logging: I implement centralized logging using the ELK stack (Elas%csearch,
Logstash, and Kibana) or AWS CloudWatch Logs. This allows me to collect, analyze, and
visualize logs from various microservices, enabling faster debugging and
troubleshoo;ng.

• Distributed Tracing: For complex, distributed systems, I use Jaeger or AWS X-Ray for
distributed tracing to understand the flow of requests through the system and iden;fy
latency bo[lenecks or errors in the request lifecycle.

• Aler%ng & Dashboards: I set up alerts based on defined thresholds using Datadog,
Prometheus, or CloudWatch Alarms to no;fy the team if there are anomalies, such as a
sudden spike in errors or degraded performance. Custom dashboards are created for a
real-;me view of system health and performance.

Observability Considera%on: Observability is integrated into the system design from the start.
It’s not only about collec;ng data but about ensuring we can make data-driven decisions for
con;nuous improvement and faster incident response.

Balancing the NFRs

To balance these NFRs, I follow a few guiding principles:

• Trade-offs: When resources (e.g., budget, ;me, or engineering capacity) are limited, I
assess trade-offs based on the specific needs of the system. For example, a high level of
security might introduce complexity and addi;onal overhead in terms of performance,
but if the data being handled is sensi;ve (e.g., healthcare or financial data), security will
take precedence. Similarly, for a cri;cal service, availability might outweigh the
performance cost.

• Con%nuous Improvement: Security, availability, and observability aren’t “one-;me”
concerns. They are con;nuously evaluated and improved upon through CI/CD pipelines
and post-incident reviews.

• Collabora%on: I regularly collaborate with security engineers, DevOps, and other team
members to ensure that security measures, scaling, and monitoring are aligned with the
business goals and technical capabili;es.

In Summary:

To ensure a robust system, I priori;ze security, availability, and observability by integra;ng
these non-func;onal requirements into the en;re lifecycle of the system. I adopt best prac;ces
and tools to implement strong encryp;on, redundancy, automated monitoring, and proac;ve
troubleshoo;ng. Balancing these requires careful considera;on of trade-offs, system goals, and
con;nuous improvement through collabora;on and itera;on.

Ques%on: How do you secure APIs in a HIPAA-compliant environment?

Answer:

How to Secure APIs in a HIPAA-Compliant Environment

Securing APIs in a HIPAA-compliant environment requires implemen;ng strict safeguards to
ensure the protec;on of Protected Health Informa%on (PHI) and maintain confiden;ality,
integrity, and availability. Below is how I approach securing APIs while mee;ng HIPAA
requirements:

1. Authen%ca%on and Authoriza%on

Ensuring that only authorized individuals and services can access the API is fundamental to
HIPAA compliance.

• OAuth 2.0 and OpenID Connect: For API authen;ca;on, I typically use OAuth 2.0
combined with OpenID Connect for iden;ty management, which ensures that only
authen;cated users or services can access sensi;ve data. The tokens are scoped to
specific roles and permissions.

• Role-Based Access Control (RBAC): Implement RBAC to limit access to PHI based on
roles (e.g., doctor, nurse, admin). This enforces the least privilege principle, ensuring
users or systems only have access to data necessary for their role.

• Mul%-Factor Authen%ca%on (MFA): To further secure access to sensi;ve APIs, I enforce
MFA for users accessing the system, reducing the risk of unauthorized access.

2. Encryp%on

HIPAA requires data encryp%on to ensure PHI is protected both in transit and at rest.

• Encryp%on in Transit: All API communica;ons are secured using TLS (Transport Layer
Security) to encrypt data while it’s being transferred over networks. This prevents
eavesdropping and man-in-the-middle a[acks.

• Encryp%on at Rest: I ensure that sensi;ve data stored in databases, file storage, or cloud
environments (e.g., AWS S3, RDS, DynamoDB) is encrypted using strong encryp;on
algorithms like AES-256. For example, AWS provides KMS (Key Management Service) for
managing encryp;on keys securely.

3. Data Audi%ng and Logging

HIPAA requires comprehensive logging and audi;ng of access to PHI to detect poten;al security
incidents and unauthorized access.

• Centralized Logging: I implement centralized logging using tools like AWS CloudWatch or
Elas%csearch (ELK stack), capturing access logs for every API request, including who
accessed what data and when. Logs include informa;on like IP address, %mestamp,
HTTP status codes, and user iden%fica%on.

• Audit Trails: I ensure audit trails are maintained to track any read/write opera;on
performed on PHI, and logs are retained according to HIPAA’s reten;on guidelines,
typically for at least six years.

4. Data Masking and Tokeniza%on

To further protect PHI, I use techniques such as data masking or tokeniza%on when dealing
with sensi;ve informa;on within APIs.

• Tokeniza%on: I replace sensi;ve data like pa;ent iden;fiers or medical records with
tokens that can be used in the system without exposing the original PHI. This prevents
data from being exposed in environments where it isn’t necessary.

• Data Masking: I use data masking techniques to ensure that API responses do not
expose sensi;ve data unless explicitly authorized. For example, only certain users can
see full pa;ent records while others may only see masked or par;al data.

5. API Gateway and Rate Limi%ng

Securing APIs also involves controlling access, managing the load, and preven;ng abuse.

• API Gateway: I deploy an API Gateway (e.g., AWS API Gateway, Kong, or Apigee) as an
entry point to manage API traffic and enforce security policies. The API Gateway helps in
valida;ng API calls, performing authen;ca;on, and rate limi;ng.

• Rate Limi%ng and Throiling: I configure rate limi%ng and throiling mechanisms to
prevent abuse and denial-of-service (DoS) a[acks. This ensures that only a certain
number of requests can be made by a user within a given ;me frame, protec;ng against
excessive load.

6. Secure SoTware Development Lifecycle (SDLC)

In a HIPAA-compliant environment, the development process itself must adhere to strict
security guidelines.

• Secure Coding Prac%ces: I adhere to secure coding standards like OWASP API Security
Top 10, including preven;ng common vulnerabili;es such as SQL Injec%on, Cross-Site
Scrip%ng (XSS), and Cross-Site Request Forgery (CSRF).

• Regular Vulnerability Scanning: I integrate tools like OWASP ZAP or Snyk to
con;nuously scan the API for vulnerabili;es and ensure compliance with HIPAA security
requirements. Automated scanning is part of the CI/CD pipeline.

• Security Tes%ng: I perform regular security tes%ng (e.g., penetra;on tes;ng) to iden;fy
weaknesses before they are exploited.

7. Compliance and Documenta%on

HIPAA mandates maintaining proper documenta;on and ensuring that appropriate agreements
and procedures are in place.

• Business Associate Agreement (BAA): I ensure that a Business Associate Agreement is
in place with any third-party service providers (e.g., cloud service providers like AWS, or
API vendors) that may handle PHI. This agreement ensures they comply with HIPAA and
enforce the same security measures.

• Compliance Reviews and Audits: I regularly conduct compliance reviews and audits to
ensure the API infrastructure meets HIPAA standards. This includes reviewing access
controls, encryp;on protocols, and logging prac;ces.

8. Incident Response and Monitoring

In a HIPAA-compliant environment, it’s essen;al to be prepared for security incidents.

• Incident Response Plan: I establish an incident response plan that outlines how to
respond to security breaches involving PHI. This plan includes steps like no;fying
affected individuals within the required ;meframe and repor;ng to regulators if
necessary.

• Con%nuous Monitoring: I leverage AWS CloudWatch, Prometheus, or Datadog for
con;nuous monitoring to detect anomalies and security breaches. Alerts are configured
for suspicious ac;vi;es such as failed login a[empts or unexpected access to sensi;ve
data.

In Summary:

Securing APIs in a HIPAA-compliant environment requires a mul;-layered approach that
includes strong authen;ca;on, encryp;on, access controls, logging, monitoring, and secure
development prac;ces. It is essen;al to ensure that PHI is protected throughout its lifecycle by
implemen;ng the appropriate safeguards and regularly reviewing compliance standards. By
combining these best prac;ces with tools like AWS KMS, API Gateway, OAuth, and
CloudWatch, I ensure that sensi;ve health data is protected, and the system remains compliant
with HIPAA regula;ons.

Ques%on: Given op%ons and libraries, how do you decide if it's worth to use a ready library,
possibly paid one, or it's beier to build from scratch?

Answer: When deciding whether to use a ready-made library (possibly a paid one) or to build
from scratch, I consider the following factors:

1. Time and Resource Constraints

• Short Timeframe: If there’s a ;ght deadline or resource limita;ons, leveraging a pre-
built library, especially a paid one with well-documented features and good support, can
save a significant amount of ;me. Building a feature from scratch oien requires ;me for
design, implementa;on, and debugging, which can extend project ;melines.

• Available Team Exper%se: If the team is familiar with the library and its ecosystem,
adop;ng a ready-made solu;on allows the team to focus on solving business problems
rather than reinven;ng the wheel. On the other hand, if the team is more experienced
with building custom solu;ons and can do so faster, building from scratch may be an
op;on.

2. Quality and Reliability

• Proven Reliability: Established libraries, par;cularly paid ones, tend to be more stable
and reliable due to extensive use and tes;ng in the community. They oien include
features like error handling, performance op;miza;ons, and built-in security measures.
If stability is crucial, I would lean towards using a well-supported, trusted library.

• Custom Requirements: If the library doesn’t meet specific requirements or the exis;ng
solu;ons are unreliable, building a custom solu;on may be necessary. For example, if a
library’s features are too general, it may lack the fine-grained control needed for a
specialized use case.

3. Maintainability and Long-Term Support

• Library Maintenance: I evaluate whether the library is ac;vely maintained and
supported. If the library is open-source, I check the frequency of updates, the size of the
community, and whether it follows best prac;ces. For a paid library, I look at vendor
support and SLA guarantees. If a library is no longer maintained, or if its updates aren’t
;mely, building from scratch may be the be[er op;on.

• Customiza%on and Extensibility: Some libraries may have limita;ons or rigid
architectures that could impede future changes. If the requirements of the project are
likely to evolve, or if I need to customize the library in ways it doesn’t support, building
from scratch might be a be[er choice.

4. Cost-Benefit Analysis

• License Costs: When using a paid library, I evaluate the cost of the library and the
poten;al ROI. Does the library provide enough value to jus;fy the expense? If the library
solves key problems and accelerates development, the cost might be worth it, especially
if it's a mission-cri;cal part of the applica;on.

• Total Cost of Ownership: This includes not just the ini;al cost but ongoing costs for
maintenance, support, and poten;al updates. If building the feature from scratch
requires fewer resources over ;me, it might be a more cost-effec;ve op;on.

5. Security Considera%ons

• Security Vulnerabili%es: Libraries, especially third-party ones, can introduce security
vulnerabili;es, so I must assess the security posture of the library. I check if the library
has been audited for security issues and if it ac;vely addresses any vulnerabili;es. If a
library is cri;cal to security and there’s a risk of exposure, I might lean toward building
from scratch to ensure complete control over security.

• Regulatory Compliance: If the project involves sensi;ve data or regulatory compliance
(e.g., HIPAA, GDPR), I ensure that the library meets all the necessary compliance
requirements. A custom-built solu;on might be required if the library doesn't meet
specific compliance standards or introduces risks.

6. Performance

• Performance Constraints: I assess whether the performance of the library meets the
needs of the project. Some libraries are not op;mized for performance and may
introduce overhead, which can be problema;c in high-performance systems. In such
cases, building from scratch or customizing the library to be[er fit performance needs is
ideal.

• Scalability: I consider whether the library can scale according to the project’s future
needs. Some libraries might work well for small-scale applica;ons but could have
limita;ons as the system grows. If scalability is cri;cal, I may prefer to build a custom
solu;on that can be op;mized for specific requirements.

7. Ecosystem and Community

• Library Ecosystem: Some libraries come with an en;re ecosystem, including integra;ons,
plugins, and a robust community. A large community can be very helpful for
troubleshoo;ng, advice, and shared knowledge, which can significantly reduce
development ;me. This might be a strong mo;vator to choose a ready-made library.

• Vendor Lock-in: If the library or service is proprietary and could lead to vendor lock-in, I
consider how this might affect long-term flexibility. If the vendor is acquired or
discon;nues the product, it may force the team into a tough spot.

8. Examples from Past Projects

• In my past role at 1010data, we leveraged AWS services such as S3, RedshiT, and
Lambda for processing large-scale data pipelines. For analy;cs and data processing
tasks, we frequently used libraries like PySpark and Dask, which saved us significant ;me
compared to building custom data-parallel processing solu;ons from scratch. The trade-
off was that we occasionally had to tweak these tools for our specific needs, but the
overall cost-benefit of leveraging pre-exis;ng tools was clear.

• When working on HIPAA-compliant pipelines, we opted for services and libraries that
had built-in security features and compliance cer;fica;ons, such as AWS KMS and AWS
API Gateway. In this case, the security and compliance features provided by these tools
far outweighed the cost of custom-built solu;ons, par;cularly when considering the
;me and effort required to implement the same level of security from scratch.

In Summary:

I decide between using a ready-made library or building from scratch by evalua;ng factors like
%me constraints, quality and reliability, maintainability, cost, security, performance needs,
and vendor lock-in. If the library aligns with the project’s needs and allows for faster delivery
with minimal risk, I would use it. However, if the library introduces limita;ons, unnecessary
overhead, or doesn’t meet the specific needs of the project, I would consider building a custom
solu;on.

Ques%on: When architec%ng a project, do you start with func%onal or non-func%onal
requirements? What, when and why?

Answer: When architec%ng a project, I typically start with non-func%onal requirements first,
and here's why:

1. Founda%on for Stability and Scalability

Non-func;onal requirements (NFRs) such as performance, scalability, availability, security, and
maintainability provide the founda;onal structure of the system. These are the constraints
within which the func;onality must operate.

• Why first: If you don't address these key concerns up front, you risk building a system
that works well in a small scale but can't handle growth or doesn't perform well under
real-world condi;ons. For instance, you may end up with a system that meets all the
func;onal requirements but struggles with performance bo[lenecks, security
vulnerabili;es, or poor scalability as usage grows.

• Example: If you are designing a high-traffic data inges;on pipeline, understanding the
performance and scalability needs of the system helps you select the right technologies
(e.g., distributed systems, asynchronous processing) to meet the load and data
throughput requirements. Without this considera;on, your system might collapse under
heavy traffic even if it delivers all the expected features.

2. Trade-off Awareness

By understanding NFRs, you can evaluate and make trade-offs between cost (e.g., choosing
between on-premise vs. cloud solu;ons, or op;ng for managed services) and performance,
security, or compliance. This early focus helps establish constraints and priori;ze features.

• Why first: Some NFRs, such as security and compliance, are non-nego;able and must be
part of the design from the start. For instance, if you're building a HIPAA-compliant data
pipeline, you need to design around encryp;on, audit logging, and access control even
before defining how the data will be processed and analyzed.

3. Defining the Architectural Style and Components

NFRs directly influence architectural decisions. For example:

• If high availability is a priority, you may need to choose an architecture with redundancy
(e.g., mul;-region AWS deployments, failover mechanisms).

• If security is cri;cal, the architecture might involve network isola;on, encryp;on
protocols, and strict IAM policies.

• If scalability is important, you might opt for microservices, event-driven architectures,
and horizontal scaling using containers or serverless services like AWS Lambda.

• Why first: Without these founda;onal decisions made early, func;onal requirements
might lead you toward an architecture that doesn't scale well or isn't secure enough for
produc;on.

4. Informed Func%onal Design

Once the non-func;onal requirements are established, you can proceed to the func;onal
requirements. The architecture you’ve designed will define how the features should be
implemented in a way that adheres to the NFRs.

• When: Aier selng the stage with non-func;onal considera;ons, the func;onal
requirements become more concrete and easier to priori;ze because you have already
mapped out the boundaries and constraints of your system.

• Why: For example, if the NFRs demand low latency, your design might priori;ze real-
;me data processing, so you will focus on features that align with that (e.g., event-driven
architecture, caching, etc.).

5. Real-World Examples from Past Projects

• HIPAA-Compliant Data Pipeline: When designing the pipeline for 1010data, the ini;al
architectural decisions revolved around compliance (HIPAA), security, and data integrity.
Once these non-func;onal requirements were outlined, we could design the features,
such as data inges;on, transforma;on, and analy;cs, to ensure they aligned with the
required security protocols and performance constraints.

• Data Inges%on Pipeline with AWS: In my previous project, where we built a scalable
data pipeline using AWS services like Lambda, S3, and API Gateway, we began by
determining performance and cost efficiency (NFRs). This helped us make informed
decisions about asynchronous data processing (using Lambda) and storage solu;ons (S3
for large-scale data). Once the infrastructure was in place, we moved to defining
func;onal workflows and APIs to handle data transforma;ons and analy;cs.

6. Itera%ve Refinement

• As the project progresses, the non-func;onal requirements and design may need to be
revisited to handle evolving func;onal needs. This itera;ve process ensures that both
func;onal and non-func;onal requirements are balanced and aligned as the system
grows.

• For example, during a performance bo[leneck, you might need to revisit how data is
ingested or processed, adjus;ng the design to be[er meet scalability needs. This is
easier to address if the ini;al design had a solid founda;on of NFRs.

In Summary:

I start with non-func%onal requirements because they define the essen;al quali;es that the
system must have (scalability, security, availability, etc.) and ensure that the system can handle
real-world condi;ons effec;vely. Once those are clearly defined and built into the architecture, I
can then focus on designing features (func;onal requirements) that fit within the constraints of
the system. This approach ensures that both the founda;onal needs and the desired features
work together harmoniously.

Ques%on: At what point of your soTware design and architecture project, you come to
discuss, formulate and sign with stakeholders SLAs, how do you approach discussing them
without fric%on and keeping expecta%ons at balance?

Answer:

When approaching Service Level Agreements (SLAs) in a soiware design and architecture
project, I find it important to integrate SLA discussions early in the design phase and engage
stakeholders throughout the process to ensure alignment on expecta;ons. Here's my approach:

1. Early Stakeholder Engagement

• Timing: SLAs should be introduced early in the planning phase, ideally before major
architectural decisions are finalized. This helps define clear expecta;ons around system
performance, availability, security, and supportability from the start.

• Collabora%on: I begin by having discussions with key stakeholders—including business
leaders, product managers, security teams, and opera;ons—about the cri;cal aspects of
the system that could be ;ed to SLAs. This ensures that both the technical and business
sides are aligned on the key goals.

• Example: When designing a HIPAA-compliant data pipeline, it’s crucial to know the data
reten%on and availability requirements early, as these will directly affect system design,
storage, and data processing methods. By engaging stakeholders in these conversa;ons
early on, the design will be[er accommodate these needs, and SLAs will be based on
what is feasible.

2. Understanding Stakeholder Needs and Priori%es

• Aligning expecta%ons: I ask stakeholders about their business priori;es, focusing on
areas like up%me, response %me, and support requirements. These conversa;ons oien
uncover implicit needs that the stakeholders might not have expressed explicitly. For
example, the product team might priori;ze rapid feature development while the
opera;ons team might be more focused on system up;me.

• Iden%fy business-cri%cal metrics: For example, if the system is cri;cal for healthcare
data processing, up;me and response ;me might be paramount, while for a non-
mission-cri;cal app, feature delivery speed might take precedence.

• Balancing trade-offs: I ensure that everyone understands the trade-offs between
different non-func;onal requirements. For example, if an SLA requires 99.9% availability,
the design may need to incorporate redundancy and disaster recovery capabili;es,
which could increase costs and complexity. These trade-offs are explained in terms
everyone can understand, ensuring that technical feasibility aligns with business
priori%es.

3. Defining the SLAs Clearly

• SMART criteria: SLAs should be Specific, Measurable, Achievable, Relevant, and Time-
bound (SMART). For example, an SLA like "response ;me under 200ms for 95% of
requests" is specific and measurable. "99.99% up;me" is another common SLA for
availability. These metrics should be clear and realis;c, considering the system's
expected load, scalability, and technical limita;ons.

• Service-level objec%ves (SLOs): I oien propose selng SLOs that fall within the
boundaries of the SLAs. SLOs represent the target levels of service (e.g., 99.9% up;me,
less than 1% error rate), and they help track performance and progress toward mee;ng
the SLA.

• Documen%ng SLAs: Aier understanding the technical constraints and stakeholder
needs, I ensure that SLAs are documented clearly, ensuring both accountability and
transparency.

• Example: In a past project where I built a data inges%on pipeline for an IoT solu;on, we
set clear SLAs like "99.9% availability" and "data processed within 15 minutes of
inges;on." We worked with stakeholders to ensure these SLAs were feasible given the
complexity of the data volume and pipeline processing ;me.

4. Communica%ng Feasibility and Trade-offs

• Clear Communica%on: It’s essen;al to communicate the technical feasibility of the SLAs
being discussed. If a proposed SLA is unrealis;c or might require significant changes to
the architecture, I’ll explain the technical challenges in non-technical terms, highligh;ng
the impact of addi%onal infrastructure or complexity. For example, achieving 99.999%
up;me may require mul;-region deployments and more complex disaster recovery
strategies.

• Avoiding overpromising: I ensure that stakeholders understand the technical debt or
complexity involved in mee;ng certain SLAs and explain the cost-benefit trade-off of
raising or lowering certain thresholds.

• Example: During a project involving cloud-based analy%cs for a retail client,
stakeholders wanted low-latency data processing, but we had to balance it with cost and
complexity. Aier discussing the poten;al technical solu;ons, such as distributed
systems, caching, and asynchronous processing, we agreed on realis;c latency goals
and acceptable processing windows.

5. Agile Itera%on and Con%nuous Monitoring

• Itera%ve Revisions: In some cases, SLAs are refined over ;me, especially if the system
evolves or if performance pa[erns deviate from ini;al expecta;ons. I approach this with
an agile mindset, ensuring that SLAs are adaptable and can be revisited periodically
based on real-world data and customer feedback.

• Con%nuous Monitoring: I put monitoring and observability mechanisms in place to track
SLA compliance in real ;me. If the system isn’t mee;ng the SLA, we can iden;fy issues
early and take correc;ve ac;on before it becomes a bigger problem. I work with
stakeholders to set up a regular review process of the SLAs, ensuring that they remain
aligned with business goals.

• Example: While designing the API Gateway for a high-traffic service, I set up real-;me
monitoring and alerts for key SLAs, such as API response %me and error rates. This
allowed us to adjust our scaling strategies on AWS Lambda as usage pa[erns fluctuated.

6. Managing Expecta%ons and Preven%ng Fric%on

• Transparency: I keep all par;es informed throughout the design and implementa;on
process, especially if there are poten;al delays or challenges in mee;ng the SLAs. This
transparency helps build trust and prevents fric;on.

• Realis%c Promises: I emphasize that while SLAs are important, con%nuous improvement
and performance tuning are ongoing processes. This helps set the expecta;on that SLAs
are not sta;c and should evolve as the system scales.

• Example: In an IoT data pipeline project, I made sure stakeholders were clear about the
required ;me for performance op;miza;ons and that SLAs could evolve with each
itera;on of the system.

In Summary:

I approach SLA discussions by engaging stakeholders early in the project, aligning on business
priori;es, defining clear and achievable SLAs, and ensuring that technical constraints and trade-
offs are well communicated. I also ensure that SLAs are adaptable and subject to itera;ve
improvements. By focusing on transparency, collabora;on, and managing expecta;ons, I avoid
fric;on and create a balanced agreement that supports both business goals and technical
feasibility.

Ques%on: In your opinion, what quali%es are essen%al for an effec%ve leader and how do you
embody these quali%es in your role?

Answer: An effec%ve leader, especially in a technical and architectural role, must possess a
combina%on of strategic thinking, clear communica%on, and a focus on team empowerment.
Key quali%es essen%al for leadership include:

1. Vision and Strategic Thinking: Leadership begins with a clear understanding of the
broader organiza;onal goals and how to achieve them. I focus on aligning the team's
work with the company's long-term objec;ves, ensuring that the strategy we pursue
addresses both immediate needs and future growth. This helps guide decision-making
and keeps everyone focused on delivering meaningful results.

2. Clear Communica%on and Transparency: One of the most cri;cal leadership quali;es is
the ability to communicate effec;vely. As a leader, I ensure that my decisions,
expecta;ons, and the ra;onale behind them are clearly conveyed to the team. I believe
transparency in communica;on fosters trust, helps manage expecta;ons, and creates an
environment where team members feel informed and valued.

3. Decisiveness and Accountability: In leadership, there are ;mes when quick decisions
are required. I take ownership of the decisions I make, and I ensure that my ac;ons are
guided by data and careful analysis. By being decisive and accountable, I demonstrate
that I stand by my choices and am commi[ed to learning from both successes and
mistakes.

4. Adaptability and Problem-Solving: The ability to navigate changing circumstances and
solve problems is crucial. In fast-paced environments, I remain flexible and open to new
approaches while focusing on the core mission. I foster a culture of con;nuous

improvement, where the team feels empowered to innovate and adapt to emerging
challenges, always striving for efficient solu;ons.

5. Empowerment and Delega%on: A leader’s success depends on the strength of their
team. I focus on empowering my team members by giving them the autonomy to make
decisions and take ownership of their work. This builds confidence, fosters innova;on,
and ensures that everyone is ac;vely contribu;ng to the team’s goals. Through effec;ve
delega;on, I ensure that responsibili;es are clearly defined, while also allowing room for
growth and development.

6. Collabora%on and Building Rela%onships: Leadership is not about being in charge, but
about crea;ng an environment where everyone can contribute and collaborate
effec;vely. I encourage collabora;on across teams, leveraging diverse perspec;ves to
create be[er solu;ons. By building strong professional rela;onships, I ensure that the
team works cohesively, with each member contribu;ng their unique strengths.

By embodying these quali;es, I aim to create an environment where the team is engaged,
mo;vated, and aligned with organiza;onal goals. This leads to be[er decision-making, a more
effec;ve and cohesive team, and ul;mately, success in achieving both short-term milestones
and long-term objec;ves.

Ques%on: How do you foster a con%nuous improvement and learning culture within your
team?

Answer: Fostering a culture of con%nuous improvement and learning within a team starts
with establishing a mindset that values growth, innova%on, and adaptability. As a leader, I
create an environment where learning is not only encouraged but is seen as integral to both
individual and team success.

First, I ensure that learning opportuni;es are available and accessible. This includes providing
access to training resources, encouraging par;cipa;on in conferences, and promo;ng
knowledge-sharing sessions. I also make it a point to foster a safe space where experimenta;on
and failure are seen as stepping stones toward growth, allowing the team to learn from
mistakes without fear of judgment.

I lead by example in con;nuously seeking feedback and improving my own prac;ces. This sets
the tone for the team, demonstra;ng that growth is a con;nuous journey at all levels. I
encourage team members to ac;vely engage with new technologies, methodologies, and best
prac;ces, and I support them in applying these learnings to their work.

Moreover, I promote a collabora;ve culture where knowledge sharing is embedded in the daily
workflow. Regular team retrospec;ves, brainstorming sessions, and cross-func;onal
collabora;on ensure that we reflect on our processes and iden;fy areas for improvement. I also

encourage the team to take ownership of their own learning paths, whether through
mentorship, self-paced courses, or collabora;ve learning opportuni;es.

Lastly, I emphasize the importance of alignment between individual growth and team goals. By
linking personal development to the larger objec;ves of the team and organiza;on, I ensure
that learning is purposeful and drives tangible outcomes. This approach ensures that con;nuous
improvement is not just a concept, but a part of the team’s daily prac;ce, leading to both
immediate performance gains and long-term success.

Ques%on: How do you handle situa%ons where team members have differing opinions or
approaches to a problem, and consesus needs to be reached?

Answer: When team members have differing opinions or approaches to a problem, it is
essen%al to approach the situa%on with respect, openness, and a clear focus on the shared
goal. As a leader, my role is to facilitate construc%ve dialogue that brings out the best in each
perspec%ve while guiding the team toward a consensus that aligns with both the technical
requirements and the broader organiza%onal objec%ves.

The first step is to ensure that all team members feel heard and that their perspec;ves are fully
understood. I create a space where everyone can express their opinions without fear of
judgment, ensuring that all relevant viewpoints are considered. By ac;vely listening, I not only
demonstrate respect for their contribu;ons but also gather valuable insights that can inform the
decision-making process.

Once the different approaches are laid out, I focus on iden;fying common ground. This involves
asking ques;ons that help clarify the underlying goals behind each sugges;on and examining
how each approach aligns with the team’s overall mission and objec;ves. By shiiing the focus
from personal viewpoints to shared outcomes, it becomes easier to find solu;ons that address
the core issue while integra;ng the best elements of each perspec;ve.

When consensus is difficult to reach, I emphasize the importance of collabora;on and
compromise. I encourage the team to weigh the pros and cons of each op;on, looking for ways
to blend elements of different approaches or create hybrid solu;ons that offer the best of both
worlds. This ensures that no one feels dismissed and that the decision is a collec;ve one, not
dictated from the top down.

In cases where an agreement s;ll can’t be reached, I take a more direc;ve role, helping the
team make a decision based on available data, project constraints, and the poten;al risks and
benefits. It’s important that the team understands the ra;onale behind this decision and that
they feel supported in execu;ng it, even if it wasn’t their preferred approach.

Ul;mately, the goal is to ensure that the team remains unified and focused on the larger vision,
even when there are differences in how to approach the problem. By fostering a culture of

mutual respect, open communica;on, and data-driven decision-making, I ensure that the team
moves forward with confidence and alignment, even in the face of divergent opinions.

Ques%on: As a thought leader and an architect, what is your typical working day?

Answer: As a Staff Engineer and System Architect at a healthcare-focused company like
Bellese, my day revolves around balancing hands-on technical work, architectural leadership,
and strategic alignment across engineering, DevOps, compliance, and product teams. Given
Bellese’s focus on FHIR, HL7, HIPAA compliance, AWS cloud infrastructure, and data
interoperability, my daily workflow ensures that our systems are scalable, secure, and
interoperable while aligning with business objec%ves.

1. Morning – Strategic Planning & Cross-Team Alignment

Since Bellese operates in the healthcare space, compliance, security, and system reliability are
cri;cal. My morning typically includes:

• Daily Standups & Syncs

◦ I par;cipate in team standups to align engineering efforts, remove blockers, and
ensure roadmap execu;on.

◦ I sync with DevOps, security, and compliance teams to review infrastructure
health, access policies, and incident reports.

• Reviewing Observability Metrics & Incident Reports

◦ I check dashboards (Datadog, Prometheus) for API latency, error rates, and SLAs
related to our FHIR-based systems.

◦ If there was an overnight FHIR inges%on failure or Kaja consumer lag, I
priori;ze debugging and incident postmortem reviews.

• Backlog Grooming & Technical Debt Priori%za%on

◦ In a healthcare environment, FHIR data models evolve, requiring con;nuous
schema adjustments.

◦ I priori%ze refactoring areas prone to performance boilenecks (e.g., slow HL7
message parsing, inefficient database queries).

2. Mid-Morning – Deep Work & System Design

As Bellese operates in FHIR-based medical data systems, a significant por;on of my work
involves designing secure, scalable, and compliant architectures.

• Designing & Reviewing System Architecture

◦ FHIR API Scalability: I evaluate whether to use AWS Lambda or a Kubernetes-
based HAPI FHIR server.

◦ Event-Driven Processing: I assess Kaja vs. SNS/SQS for HL7 message inges%on.
◦ Data Storage: I analyze whether to store FHIR resources in PostgreSQL (JSONB)

vs. DynamoDB for query performance.
• Hands-on Prototyping & POCs

◦ Tes;ng FHIR API performance under load using Locust or K6.
◦ Benchmarking Terraform deployments for AWS compliance automa%on.

• Code & Design Reviews

◦ Reviewing CI/CD pipelines to ensure compliant infrastructure deployments
(Terraform, AWS IAM, security policies).

◦ Reviewing FHIR integra%on logic to ensure it aligns with ONC/CMS
interoperability guidelines.

3. Mid-Day – Cross-Func%onal Collabora%on & Decision-Making

Given Bellese’s focus on plagorm architecture, cloud infrastructure, and regulatory
compliance, collabora;on across mul;ple teams is essen;al.

• Technical & Product Stakeholder Mee%ngs

◦ Mee;ng with Product & Compliance teams to discuss new regulatory
requirements (CURES Act, SMART on FHIR authen%ca%on, data reten%on
policies).

◦ Collabora;ng with DevOps on AWS infrastructure (ensuring Terraform modules
follow SOC 2 controls).

• Trade-off Analysis & Decision-Making

◦ Security vs. Developer Velocity: Balancing least-privilege IAM roles with
developer access needs.

◦ Batch vs. Streaming: Deciding when to use batch FHIR data inges%on (ETL) vs.
event-driven real-%me inges%on (Kaja, Flink).

◦ Monolith vs. Microservices: Assessing whether a modular monolith would be
more maintainable than splilng services prematurely.

• Handling Conflicts & Aligning Agendas

◦ If compliance demands immutable audit logs but product needs faster itera%on
cycles, I drive a compromise by implemen%ng append-only logs with versioned
FHIR resources.

◦ If security requests stricter API rate limits, but data teams need high-volume
inges%on, I work with both sides to implement adap%ve throiling instead of
sta;c limits.

4. ATernoon – Execu%on, Leadership & Technical Strategy

Beyond hands-on work, my focus is on mentorship, knowledge-sharing, and ensuring
architectural alignment with Bellese’s long-term goals.

• Mentoring & Coaching Engineering Teams

◦ Guiding teams on FHIR data normaliza%on strategies to improve API efficiency.
◦ Teaching best prac;ces for Terraform state management to avoid

misconfigura;ons.
◦ Helping engineers adopt Domain-Driven Design (DDD) principles for modular

healthcare microservices.
• Driving Long-Term Engineering Vision

◦ Maintaining an Architecture Decision Record (ADR) repository for documen%ng
trade-offs in key system design choices.

◦ Advoca;ng for event-driven architecture improvements (FHIR messaging via
Kaja or AWS EventBridge).

• Security & Compliance Reviews

◦ Ensuring AWS IAM roles follow least-privilege principles.
◦ Reviewing audit logs, access paierns, and data encryp%on policies for HIPAA

compliance.
• Incident Response & Postmortem Analysis

◦ If an FHIR API outage occurs, I lead the blameless postmortem, iden;fying root
causes (latency spikes, database locking issues, misconfigured rate limits).

◦ Implemen;ng automated rollback strategies in Terraform to ensure rapid
recovery.

5. End of Day – Documenta%on & Con%nuous Improvement

A structured engineering organiza;on depends on strong documenta%on and con%nuous
improvement.

• Wri%ng Design Docs & RFCs

◦ Draiing RFCs for FHIR data par%%oning strategies to improve query
performance.

◦ Documen;ng AWS Well-Architected Review findings for cost op%miza%on &
resilience.

• Reviewing Dashboards & Metrics

◦ Checking observability data (e.g., latency percen;les for API endpoints).

◦ Ensuring SLAs & SLOs are being met for healthcare providers relying on our
plagorm.

• Planning for Tomorrow

◦ Priori;zing the next day’s deep work (design reviews, architecture decisions,
technical mentorship).

Conclusion & Key Takeaways

At Bellese, my daily workflow is a mix of architectural decision-making, leadership,
compliance-driven engineering, and hands-on technical work.

• Healthcare-Focused Engineering: Ensuring FHIR/HL7 compliance, HIPAA security
standards, and AWS best prac%ces.

• Cross-Team Leadership: Balancing technical scalability, security constraints, and
product requirements.

• Decision-Driven Architecture: Making evidence-based trade-offs between cost,
performance, and maintainability.

• Strategic Mentorship: Upskilling teams in cloud architecture, DevOps automa%on, and
secure data processing.

• Resilience & Reliability: Monitoring SLAs/SLOs, leading incident response, and refining
infrastructure automa%on.

