
Project Requirements Document. V1.
Project: Next-Genera9on Pa9ent Journey Graph Pla?orm: Unified MPI, Clinical
Insights, and Real-Time Telemedicine Integra9on

Sponsor: Medical Robo9x Team

Team Name: Medical Robo9x Team

Authors: Dmitry Roitman

Table of Contents:

1. Introduc;on
1.1 Background
1.2 Problem Statement
1.3 Proposed Soluion
1.4 Goals and Objec9ves
1.5 Scope of the Project
1.6 Features and Value Proposi9on
1.7 Target Audience
1.8 Compe9tors Landscape

2. Requirements Overview
2.1 Func9onal Requirements
2.2 Non-Func9onal Requirements
2.3 Compliance and Standards (e.g., HIPAA, FHIR, HL7)
2.4 Assump9ons and Constraints
2.5 Priori9za9on and Feature Significance

3. System Design and Architecture
3.1 High-Level System Architecture
3.2 Backend Design
3.2.1 Database Schema and Graph Database Design
3.2.2 API Endpoints and FHIR Integra9on
3.2.3 Data Pipelines and Real-Time Processing
3.3 Frontend Design
3.3.1 Dashboard Features (Clinician View, Pa9ent View, Admin View)
3.3.2 User Interface and UX Principles
3.4 Chat Service
3.4.1 Real-Time Communica9on Architecture

3.4.2 Use of ZeroMQ for Scalable Messaging
3.4.3 Integra9on with Telemedicine Features
3.5 No9fica9ons and Alerts
3.5.1 No9fica9on Types (System, Pa9ent-Centric, Clinical)
3.5.2 Delivery Mechanisms (SMS, Email, In-App)
3.6 Telemedicine Integra9on
3.6.1 Video and Audio Communica9on Features
3.6.2 Scheduling and Virtual Consulta9ons
3.6.3 Sandbox Tes9ng and Mock APIs
3.7 Search, Tagging, and NLP Features
3.7.1 Graph Search Capabili9es
3.7.2 NLP-Powered Clinical Notes and Insights
3.8 Data Visualiza9on and Analy9cs
3.8.1 Pa9ent Journey Visualiza9ons
3.8.2 Predic9ve Analy9cs and ML Integra9on

4. Sequence and Component Diagrams
4.1 Sequence Diagrams for Key Use Cases
4.2 Component Diagrams for System Modules

5. Security and Privacy
5.1 Data Encryp9on and Storage Policies
5.2 Role-Based Access Control (RBAC)
5.3 Audit Trails and Logging

6. Development Plan
6.1 Features and Subfeatures Breakdown
6.2 Timeline and Milestones
6.3 Tes9ng and Valida9on Strategy

7. Tes;ng Strategy
7.1 Unit Tes9ng
7.2 Integra9on Tes9ng
7.3 User Acceptance Tes9ng (UAT)
7.4 Mock and Sandbox Tes9ng for Integra9ons

8. Deployment Plan
8.1 Deployment Environment Setup
8.2 CI/CD Pipeline
8.3 Monitoring and Observability Tools

9. Appendix
9.1 Tech Stack Overview
9.2 Links and Resources

9.3 Glossary of Terms
9.4 References

Introduc9on

1.1. Background

In today’s rapidly evolving healthcare landscape, the ability to deliver efficient, pa9ent-centric care is
constrained by the limita9ons of exis9ng Electronic Health Record (EHR) and Electronic Medical
Record (EMR) systems. While these systems have made strides in digi9zing medical records, they
ojen fall short in enabling seamless interoperability, real-9me data insights, and holis9c pa9ent
journey management. This lack of func9onality creates significant challenges for clinicians,
administrators, and pa9ents alike, including fragmented data, inefficiencies in clinical workflows,
and subop9mal pa9ent outcomes.

Clinicians face an overwhelming administra9ve burden, spending hours naviga9ng rigid, outdated
interfaces that lack context-aware insights. Administrators struggle to derive ac9onable intelligence
from siloed data sources, while pa9ents encounter delayed or incomplete access to their medical
informa9on. These inefficiencies are exacerbated by the growing need for telemedicine, data-driven
decision-making, and compliance with stringent regula9ons such as HIPAA and FHIR standards.

Our pla?orm addresses these gaps by offering an integrated solu9on that goes beyond tradi9onal
EHR/EMR capabili9es. At its core, it u9lizes a graph-based data model to seamlessly map and
manage the pa9ent journey, linking encounters, medical notes, vitals, and events into a unified
ecosystem. Advanced features such as real-9me chat, telemedicine integra9on, and natural
language processing (NLP) for clinical notes provide dynamic, intui9ve tools to enhance care
delivery.

This pla?orm delivers a robust ecosystem designed to manage the en9re pa9ent journey, seamlessly
integra9ng with EHR/EMR systems via FHIR and HL7 standards. It enhances clinical workflows with
intelligent tools, facilitates the real-9me flow of clinical data, and supports bemer pa9ent care
through telemedicine integra9on, predic9ve analy9cs, and advanced visualiza9ons. Core
func9onali9es include NLP-driven clinical notes, voice-to-text capabili9es, and graph-based data
management, all aimed at improving efficiency, reducing errors, and suppor9ng evidence-based
decision-making.

This innova9ve approach resolves cri9cal pain points by:

• Enhancing Interoperability: Leveraging FHIR standards and a master pa9ent index (MPI) to
enable seamless integra9on with exis9ng systems and third-party applica9ons.

• Empowering Clinical Decision-Making: Offering real-9me analy9cs, predic9ve modeling,
and visualiza9on tools to iden9fy trends, improve outcomes, and reduce cogni9ve overload.

• Streamlining Telemedicine: Embedding scheduling, video consulta9ons, and virtual care
features that meet the demands of a post-pandemic world.

• Improving Workflow Efficiency: Introducing intui9ve search, tagging, and graph-based
rela9onship management, enabling clinicians to access the right informa9on at the right
9me.

• Reducing Administra;ve Burden: Automa9ng key tasks such as pa9ent communica9ons,
note-taking, and compliance repor9ng, freeing up 9me for high-value care ac9vi9es.

By bridging the func9onal void in current EHR/EMR pla?orms, this startup’s technology empowers
medical offices to deliver truly pa9ent-centered care while improving the lives of clinicians,
administrators, and pa9ents. With a focus on flexibility, scalability, and cunng-edge innova9ons, it
addresses the needs of a healthcare industry in urgent need of moderniza9on.

1.2 Problem Statement

The healthcare industry faces cri9cal challenges in delivering efficient, pa9ent-centric care due to
gaps in interoperability, data accessibility, and workflow efficiency. Current EHR/EMR systems are
ojen rigid, siloed, and incapable of adap9ng to the dynamic needs of modern healthcare. This
creates several pressing issues:

1. Fragmented Pa;ent Journeys: Pa9ents frequently experience care that lacks cohesion and
transparency, making it difficult for them to understand their medical history or par9cipate
ac9vely in their care. Disparate systems and limited access to real-9me insights exacerbate
this problem.

2. Administra;ve Overload for Clinicians: Physicians and nurses spend excessive 9me on
manual data entry, searching for informa9on across disconnected systems, and naviga9ng
complex interfaces. This leads to burnout, reduced efficiency, and decreased 9me spent on
direct pa9ent care.

3. Lack of Contextual Insights: Exis9ng systems fail to provide ac9onable intelligence or
context-aware recommenda9ons. This limits clinicians' ability to make informed decisions,
leading to delays in care, missed diagnoses, or redundant tests.

4. Insufficient Telemedicine Integra;on: As telehealth becomes an essen9al part of healthcare
delivery, most pla?orms lack seamless tools to manage virtual consulta9ons, secure
communica9on, or data integra9on for remote care.

5. Inefficient Use of Clinical Notes: The current approach to clinical note management is
burdensome, with limited automa9on and poor search capabili9es. Clinicians ojen struggle
to extract relevant informa9on or analyze unstructured data effec9vely.

6. Challenges in Compliance and Security: Mee9ng stringent regulatory standards like HIPAA
and FHIR remains a complex task, par9cularly when integra9ng with third-party systems or
enabling pa9ent access to their data.

1.3 Proposed Soluion

This pla?orm directly addresses cri9cal gaps in healthcare delivery by leveraging advanced
technology and a pa9ent-centered approach to improve care, enhance clinical workflows, and
ensure data interoperability. By using state-of-the-art tools, it empowers clinicians, pa9ents, and
administrators to deliver bemer outcomes while increasing efficiency. The solu9on is built on a
founda9on of modern technologies and methodologies, ensuring scalability, security, and future-
proofing.

Key Features and Innova;ons

1. Holis;c Pa;ent Journey Management

◦ Graph-Based Pa;ent Journey Visualiza;on: A dynamic, graph-driven system
integrates pa9ent encounters, vitals, medical notes, and events into a cohesive and
easily navigable view. This enables both pa9ents and clinicians to track the en9re
pa9ent journey, providing transparency and empowering pa9ents to take an ac9ve
role in their care.

◦ Technologies: Rust, Go (backend), Angular, D3.js (frontend) for visualizing pa9ent
data in an intui9ve, user-friendly interface.

2. Streamlined Clinical Workflows

◦ Smart Search and Tagging: The pla?orm employs advanced tagging, search, and
categoriza9on mechanisms for unstructured clinical data, such as medical notes,
diagnoses, and procedures. These intelligent systems improve data retrieval, making
clinical workflows faster and more efficient, and reducing the cogni9ve load on
clinicians.

◦ Automa;on: Rou9ne administra9ve tasks, such as appointment scheduling,
documenta9on processing, and billing updates, are automated to reduce clinician
burnout and streamline daily opera9ons.

◦ Technologies: ZeroMQ for asynchronous messaging, Kapa for event-driven
architecture, Go for backend automa9on, and Rust for high-performance data
processing.

3. Enhanced Telemedicine Tools

◦ Real-Time Communica;on: The pla?orm provides integrated scheduling, secure
video consulta9ons, instant messaging, and document sharing. Clinicians can engage
with pa9ents quickly and efficiently in a HIPAA-compliant environment, reducing
wait 9mes and improving care delivery.

◦ Pa;ent-Clinician Interac;on: The system facilitates remote consulta9ons, offering
clinicians real-9me access to pa9ent data and empowering them to make informed
decisions during virtual visits.

◦ Technologies: WebRTC for video communica9on, ZeroMQ for real-9me messaging,
Kapa for managing communica9on streams.

4. Advanced Analy;cs and Natural Language Processing (NLP)

◦ Data Insights and Automa;on: The pla?orm includes advanced analy9cs tools and
NLP for summarizing clinical notes, extrac9ng insights, and iden9fying pamerns in
pa9ent data. By automa9ng the extrac9on of cri9cal informa9on, clinicians can make
more accurate diagnoses, avoid redundant tests, and improve overall pa9ent care.

◦ Predic;ve Analy;cs: Machine learning models provide predic9ve insights, such as
iden9fying at-risk pa9ents or predic9ng care trajectories, helping clinicians to
intervene early and improve pa9ent outcomes.

◦ Technologies: Python for NLP, Rust and Go for high-performance processing,
integra9on with ELK Stack for data analysis and logging, and Kapa for real-9me data
streaming.

5. Interoperability and Compliance

◦ FHIR Integra;on: Built with FHIR-compliant APIs, the pla?orm ensures seamless
integra9on with exis9ng healthcare systems, including EHR/EMR systems, medical
devices, and third-party healthcare applica9ons. This makes it easier for healthcare
providers to adopt and scale the pla?orm without disrup9ng exis9ng workflows.

◦ Regulatory Compliance: Designed with stringent HIPAA compliance and data
security measures, the pla?orm ensures pa9ent data is protected with end-to-end
encryp9on and follows all required healthcare standards.

◦ Technologies: Kapa for integra9on, Go for backend services, and use of industry-
standard security protocols (OAuth, SSL/TLS) for secure data transac9ons.

6. Scalability and Performance

◦ High-Throughput Architecture: With a backend built to handle large data volumes
and high concurrency, the pla?orm ensures smooth performance even in demanding
environments. This is achieved using modern messaging systems and microservices,
ensuring that the pla?orm can scale to meet the needs of large healthcare
ins9tu9ons.

◦ Technologies: Go for scalable microservices architecture, Rust for performance-
cri9cal components, Kapa for distributed data streaming, and ZeroMQ for scalable
messaging and event-driven communica9on.

7. Advanced Visualiza;on and Insights

◦ Pa;ent Data Visualiza;on: The pla?orm’s frontend u9lizes Angular and D3.js to
deliver advanced visualiza9ons of pa9ent health data, including trends, care
milestones, and diagnos9c informa9on. This helps both pa9ents and clinicians bemer
understand the pa9ent’s health status, providing ac9onable insights in a highly
interac9ve and intui9ve interface.

◦ Technologies: Angular for dynamic web interfaces, D3.js for data-driven
visualiza9ons.

8. Data Security and Compliance

◦ End-to-End Encryp;on: All pa9ent communica9ons and data exchanges within the
pla?orm are secured using industry-leading encryp9on technologies, ensuring
pa9ent confiden9ality and trust.

◦ Audit Logs and Security Monitoring: All interac9ons with the pla?orm are logged for
compliance and security audi9ng. ELK Stack is used for monitoring, logging, and
visualizing system ac9vity to iden9fy poten9al vulnerabili9es or breaches.

Addressing Key Healthcare Challenges

By directly addressing the pain points that current EHR/EMR systems fail to resolve, this pla?orm
transforms the healthcare experience. From improving pa9ent outcomes with accurate data and
real-9me analy9cs to streamlining workflows for clinicians and administrators, the solu9on is
designed to meet the complex needs of modern healthcare.

The pa;ent-centered approach ensures that all features are designed with user needs in mind,
allowing for a more efficient and transparent care process. Advanced analy9cs, secure
communica9on, and interoperability enable seamless collabora9on across care teams, improving
decision-making and ul9mately delivering bemer healthcare outcomes.

Addi9onally, the pla?orm’s unique ability to integrate with exis9ng EHR/EMR systems and medical
tools while maintaining regulatory compliance (HIPAA, FHIR, and ICD codes) makes it an amrac9ve
investment opportunity. Its use of modern technologies ensures future-proofing, scalability, and the
ability to con9nuously innovate with the latest advancements in healthcare IT.

1.4 Goals and Objec9ves

The primary goal of this project is to develop an innova9ve pla?orm that bridges cri9cal gaps in
healthcare delivery, enhances pa9ent care, and streamlines clinical workflows. This pla?orm aims to
address the inefficiencies, lack of interoperability, and limita9ons in current EHR/EMR systems by
providing a comprehensive, user-centric solu9on.

Goals

1. Empower Pa;ents:

◦ Deliver a cohesive view of the pa9ent journey by integra9ng appointments, medical
notes, diagnos9c results, and treatment plans into a single, intui9ve interface.

◦ Enhance transparency and pa9ent engagement by enabling access to real-9me data
and personalized insights.

◦ Provide secure and easy-to-use telemedicine tools, including video consulta9ons,
chat, and document sharing.

2. Streamline Clinical Workflows:

◦ Automate repe99ve tasks such as note-taking, summariza9on, and data entry to
reduce administra9ve burdens on clinicians.

◦ Enable intelligent search and tagging func9onali9es for quick and accurate retrieval
of pa9ent records and medical notes.

◦ Offer ac9onable insights through advanced analy9cs and natural language
processing (NLP).

3. Ensure Interoperability and Compliance:

◦ Develop FHIR-compliant APIs and connectors for seamless integra9on with exis9ng
EHR/EMR systems and third-party healthcare pla?orms.

◦ Implement robust security measures to ensure HIPAA compliance and protect
sensi9ve pa9ent data.

4. Enable Real-Time Collabora;on:

◦ Introduce real-9me chat services for pa9ent-clinician communica9on and team
collabora9on.

◦ Integrate with no9fica9ons and reminders to improve appointment adherence and
care plan follow-ups.

5. Support Scalable and Flexible Architecture:

◦ Build a modular and extensible system that can adapt to the evolving needs of
healthcare providers and pa9ents.

◦ U9lize a graph-based pa9ent journey management system to allow dynamic
visualiza9on of rela9onships and events in pa9ent care.

Objec9ves

1. Pa;ent Experience Features:

◦ Implement a user-friendly portal with secure authen9ca9on for pa9ents to access
their medical records, notes, and telemedicine services.

◦ Develop a tagging and search system to make accessing health data straigh?orward
and efficient.

2. Clinical Support Features:

◦ Integrate intelligent tools for summarizing and structuring unstructured data, such as
medical notes and pa9ent histories.

◦ Provide visualiza9on tools for graph-based representa9ons of pa9ent journeys to
help clinicians iden9fy trends and make informed decisions.

3. Telemedicine and Collabora;on Tools:

◦ Offer seamless scheduling, secure video consulta9ons, and in-chat document sharing
for virtual care.

◦ Implement real-9me no9fica9ons for updates, reminders, and pa9ent follow-ups.
4. Backend and Integra;ons:

◦ Ensure the backend architecture supports FHIR-compliant data exchange and
efficient data storage for scalability.

◦ Design APIs to integrate with third-party applica9ons and enable data
synchroniza9on across systems.

5. Technology and Compliance:

◦ U9lize state-of-the-art technologies, including NLP, machine learning, and advanced
analy9cs, to enhance func9onality and data-driven decision-making.

◦ Adhere to regulatory standards like HIPAA and ensure secure data handling
throughout the pla?orm.

By achieving these goals and objec9ves, the pla?orm will address the most pressing challenges in
healthcare, delivering value to pa9ents, clinicians, and administrators while redefining the role of
technology in improving healthcare outcomes.

1.5 Scope of the Project

Overview

The scope of this project is to design, develop, and deploy a comprehensive healthcare pla?orm
that addresses cri9cal gaps in pa9ent care, clinical workflows, data interoperability, and regulatory
compliance. This pla?orm will serve as a unified solu9on for healthcare professionals and pa9ents,
providing advanced func9onali9es such as real-9me communica9on, data analy9cs, medical coding
integra9on, secure telemedicine, graph-based pa9ent journey visualiza9on, and enhanced pa9ent

data management. By integra9ng modern technologies, the pla?orm aims to streamline clinical
workflows, enhance pa9ent outcomes, and provide ac9onable insights, ul9mately fostering an
innova9ve and pa9ent-centered healthcare experience.

In-Scope

Core Features and Func;onali;es (MVP)

1. Graph-Based Pa;ent Journey System

◦ Implementa9on of an intui9ve, graph-driven system to visualize and track the en9re
pa9ent journey, including events, rela9onships, and care pathways across different
providers.

◦ Provides a comprehensive view of pa9ent care, improving communica9on and
decision-making.

2. Medical Codes Integra;on (ICD, CPT, SNOMED CT)

◦ Integra9on of key medical coding standards (ICD, CPT, SNOMED CT) for accurate
diagnosis, procedure tracking, and clinical findings.

◦ Ensures compliance with healthcare regula9ons and improves billing accuracy.
3. Real-Time Communica;on Tools

◦ Secure chat, video consulta9ons, document sharing, and no9fica9ons for seamless
communica9on between pa9ents, clinicians, and administrators.

◦ Op9mized for ease of use and responsive to the needs of real-9me care delivery.
4. FHIR Integra;on and Interoperability

◦ Development of FHIR-compliant APIs to ensure seamless integra9on with exis9ng
EHR/EMR systems, third-party healthcare pla?orms, and medical devices.

◦ Supports cross-pla?orm data exchange and ensures the pla?orm can easily be
integrated into exis9ng healthcare infrastructure.

5. Analy;cs and Insights

◦ Advanced data analy9cs capabili9es, including Natural Language Processing (NLP) for
summarizing, structuring, and deriving insights from unstructured pa9ent data.

◦ Provides ac9onable insights for clinicians to improve care delivery and outcomes.
6. Backend Development

◦ Design and implementa9on of a scalable, high-performance backend to support
large data throughput, reliability, and compliance.

◦ Integra9on of robust storage solu9ons for structured and unstructured medical data
(including text, images, and sensor data).

7. Frontend Development

◦ User-friendly interface for both medical professionals and pa9ents, with features like
secure login, data visualiza9on, pa9ent journey mapping, task management, and
scheduling.

◦ Real-9me interac9on components for booking appointments, communica9ng with
healthcare providers, and receiving no9fica9ons.

8. Asynchronous Communica;on & Messaging Systems

◦ Integra9on of messaging systems such as Kapa or ZeroMQ for efficient handling of
real-9me and asynchronous communica9on.

9. Compliance and Security

◦ Adherence to HIPAA and other relevant healthcare regula9ons.
◦ End-to-end encryp9on for all communica9on and data storage systems, ensuring

pa9ent confiden9ality and secure data exchange.
10. Tes;ng and Quality Assurance

◦ Rigorous tes9ng of all system components, including func9onality, usability,
performance, and security.

◦ Compliance valida9on for regulatory standards to ensure the pla?orm meets
necessary healthcare requirements.

Post-MVP Features (Planned Enhancements)

1. Telemedicine Enhancements

◦ Advanced features for telemedicine, such as AI-powered symptom checkers,
automa9c document processing, and advanced pa9ent triage during consulta9ons.

◦ Integra9on with wearable devices and health monitoring tools for real-9me health
tracking during remote consulta9ons.

2. Expanded Analy;cs

◦ Advanced machine learning models for predic9ve analy9cs to assist in decision
support for clinicians, such as early detec9on of high-risk pa9ents.

◦ Integra9on with addi9onal external data sources, such as genomic data, to enhance
personalized care.

3. Pa;ent-Generated Data Integra;on

◦ Integra9on with more IoT and wearable devices (e.g., heart rate monitors, glucose
sensors) for real-9me health data collec9on and pa9ent monitoring.

◦ Support for pa9ent-generated health data to be shared directly with clinicians for
personalized care recommenda9ons.

4. Interna;onaliza;on and Mul;-Language Support

◦ Expansion to support mul9-language pla?orms and interna9onal healthcare
standards, providing global scalability.

5. Advanced Interoperability

◦ Further development of interoperability tools to support addi9onal health data
standards beyond FHIR, including HL7 and CDA for richer integra9on with legacy
healthcare systems.

6. Custom Analy;cs Dashboards

◦ Advanced dashboards and repor9ng tools for administrators to track key metrics,
such as hospital admissions, pa9ent outcomes, and opera9onal efficiency.

7. Mobile App Development

◦ A dedicated mobile applica9on for pa9ents and healthcare providers, offering on-
the-go access to pa9ent data, video consulta9ons, and real-9me health updates.

Out-of-Scope

1. Custom Development for Specific Ins;tu;ons (Outside MVP Timeline)

◦ Custom features for individual healthcare ins9tu9ons that fall outside the agreed-
upon MVP features and 9meline.

2. Non-Healthcare Use Cases

◦ Extension of the pla?orm into non-medical domains (e.g., corporate health
management or non-healthcare applica9ons).

3. Hardware Development

◦ The design, produc9on, or integra9on of physical devices or IoT hardware is not
included within the scope of this project.

Assump;ons

• The ini9al target audience will be small to mid-sized healthcare providers, with scaling to
larger ins9tu9ons in subsequent phases.

• Users will have access to modern devices and stable internet connec9ons for seamless
interac9on with the pla?orm.

• The MVP will focus on the most impac?ul and cri9cal workflows, with addi9onal
integra9ons and features added in post-MVP phases.

• Healthcare providers will already have some form of exis9ng EHR or clinical system to
integrate with the pla?orm.

Deliverables

• MVP Deliverables:

◦ A fully func9onal healthcare pla?orm with core features such as graph-based pa9ent
journey management, telemedicine services, and secure communica9on tools.

◦ FHIR-compliant APIs and necessary integra9on documenta9on.
◦ User guides and training materials for clinicians, administrators, and pa9ents.
◦ A secure and scalable backend infrastructure suppor9ng the MVP features.

• Post-MVP Deliverables:
◦ Roadmap for feature enhancements, including advanced telemedicine tools,

machine learning analy9cs, and interna9onaliza9on.
◦ Ongoing support and maintenance for system upgrades and new integra9ons.
◦ Mobile applica9on for pa9ent and clinician interac9on.

By defining and adhering to this scope, the project aims to deliver a robust, scalable, and compliant
healthcare pla]orm that significantly improves healthcare delivery and pa9ent outcomes while
laying a strong founda9on for future growth and innova9on.

1.6 Features and Value Proposi9on

Core Features

1. Graph Database for Pa;ent Journey (MVP)

◦ Func;onality: Tracks every step in the pa9ent's care journey, including encounters,
vitals, events, medical notes, diagnoses, treatments, lab results, and medical codes,
all represented as interconnected graph nodes.

◦ Benefit: Provides clinicians with a holis9c, interconnected view of the pa9ent,
improving decision-making and care coordina9on.

◦ Priority: High. Cri9cal for accurate pa9ent data representa9on and real-9me
tracking.

2. Master Pa;ent Index (MPI) (MVP)

◦ Func;onality: Ensures unique pa9ent iden9fica9on across disparate healthcare
systems to prevent duplicate records and misiden9fica9ons.

◦ Benefit: Eliminates data fragmenta9on, providing reliable and consistent pa9ent
records.

◦ Priority: High. Essen9al for data integrity and pa9ent safety.
3. Search and Tagging (MVP)

◦ Func;onality: Enables users to tag, categorize, and search pa9ent data efficiently
using keywords, metadata, or tags related to clinical notes, diagnoses, treatments, or
events.

◦ Benefit: Improves efficiency and reduces errors by making data easily accessible for
administra9ve tasks, clinical decision-making, and repor9ng.

◦ Priority: High. Streamlines workflows and enhances usability.
4. Event Handling (MVP)

◦ Func;onality: Tracks pa9ent events (e.g., hospitaliza9ons, surgeries, appointments)
and integrates them into the pa9ent’s journey.

◦ Benefit: Provides real-9me updates and a dynamic view of pa9ent history for
clinicians, improving decision-making and communica9on.

◦ Priority: High. Essen9al for accurate, 9mely clinical decision-making.
5. Clinical Notes Management (Including NLP and Voice-to-Text) (MVP)

◦ Func;onality: Converts clinician speech to structured text for pa9ent records using
Natural Language Processing (NLP). Includes voice-to-text func9onality for efficient
medical documenta9on.

◦ Benefit: Saves 9me on manual data entry, reduces transcrip9on errors, and improves
documenta9on quality.

◦ Priority: High. Direct impact on clinician 9me management and data accuracy.
6. Medical Codes (ICD, CPT, SNOMED CT) (MVP)

◦ Func;onality: Provides support for common clinical coding systems to capture
diagnoses, procedures, and clinical findings.

◦ Benefit: Enhances the accuracy and completeness of clinical records while
suppor9ng regulatory compliance and billing processes.

◦ Priority: High. Crucial for compliance, billing, and data exchange.
7. Telemedicine Integra;on (MVP)

◦ Func;onality: Supports virtual visits, video consulta9ons, and telemedicine session
management integrated directly within the pla?orm’s pa9ent records.

◦ Benefit: Facilitates remote care and seamlessly integrates telemedicine interac9ons
with pa9ent data.

◦ Priority: High. Essen9al for modern care delivery models.
8. Analy;cs and Predic;ve ML/AI (Post-MVP)

◦ Func;onality: Uses machine learning algorithms to provide predic9ve analy9cs,
treatment sugges9ons, risk predic9ons, and outcome forecas9ng based on historical
pa9ent data.

◦ Benefit: Enables proac9ve clinical decisions, reduces adverse events, and improves
outcomes.

◦ Priority: Medium. High poten9al impact but requires mature data and algorithm
development.

9. Plugin Ac;va;on for Extendability (Post-MVP)

◦ Func;onality: Allows for future scalability and customiza9on by enabling plugins
(e.g., new data sources or custom repor9ng tools).

◦ Benefit: Facilitates pla?orm flexibility and scalability without full redevelopment.

◦ Priority: Medium. Secondary to core features but cri9cal for long-term adaptability.
10. CLI for Administra;on and Troubleshoo;ng (Post-MVP)

◦ Func;onality: Provides command-line tools for managing and troubleshoo9ng
system health, data integrity, and duplicate records.

◦ Benefit: Improves developer and administrator efficiency during maintenance and
debugging.

◦ Priority: Medium. Useful for technical teams but not essen9al for MVP delivery.

Frontend Features

1. Dashboards (Universal) (MVP)

◦ Func;onality: Customizable role-based dashboards displaying key metrics such as
pa9ent status, clinical outcomes, alerts, and event no9fica9ons.

◦ Benefit: Provides users with real-9me data visualiza9ons to support decision-
making.

2. Pa;ent View (Post-MVP)

◦ Func;onality: Empowers pa9ents by providing access to their health data, upcoming
appointments, telemedicine session details, and educa9onal resources.

◦ Benefit: Enhances pa9ent engagement and self-management.
3. Clinician View (MVP)

◦ Func;onality: Provides a comprehensive interface featuring pa9ent charts, medical
codes, clinical notes, real-9me events, lab results, and AI-driven recommenda9ons.

◦ Benefit: Enhances clinical decision-making by centralizing cri9cal pa9ent data.
4. Admin View (Post-MVP)

◦ Func;onality: Includes tools for monitoring pla?orm health, valida9ng pa9ent
records, managing user roles, and ensuring compliance.

◦ Benefit: Streamlines administra9ve oversight and enhances troubleshoo9ng
efficiency.

How These Features Complement Exis;ng Systems

• Enhanced Interoperability: Integra9on with EHR/EMR systems via FHIR and HL7 eliminates
silos, improving data flow, care coordina9on, and reducing entry errors.

• Improved Workflow Efficiency: Features like the graph database, event handling, and
advanced search/tagging augment exis9ng systems to manage complex pa9ent data
rela9onships efficiently.

• Be_er Clinical Decision Support: Predic9ve analy9cs and medical coding integra9on
enhance decision-making by providing ac9onable insights and treatment recommenda9ons.

• Modern Telemedicine Support: Na9ve telemedicine integra9on addresses the limita9ons of
tradi9onal EHR systems in suppor9ng remote care.

• Streamlined Documenta;on: NLP and voice-to-text capabili9es reduce the burden of
manual data entry for clinicians.

Conclusion

This pla?orm priori9zes MVP features such as the graph database, MPI, search and tagging, and
telemedicine integra9on to deliver immediate value to clinicians and healthcare providers. By
ensuring a robust founda9on, it empowers seamless interoperability, accurate pa9ent journey
tracking, and efficient clinical workflows.

Post-MVP features, including predic9ve analy9cs, pa9ent self-service tools, and plugin extendability,
offer a pathway for long-term scalability and advanced capabili9es. These will further enrich the
pla?orm's ecosystem, ensuring it remains adaptable to evolving healthcare needs.

The pla?orm is designed to address cri9cal challenges in modern healthcare, such as data
fragmenta9on, workflow inefficiencies, and pa9ent engagement, while senng the stage for
innova9on and transforma9ve care delivery.

1.7 Target Audience

Overview

The pla?orm is designed to cater to a diverse range of stakeholders within the healthcare
ecosystem. By addressing the specific needs of each audience segment, the pla?orm will empower
users with tailored solu9ons, improve workflows, and foster bemer outcomes.

Primary Audience

1. Healthcare Providers (Clinicians and Staff):

◦ Roles: Physicians, nurses, medical assistants, administra9ve staff.
◦ Needs and Challenges:

▪ Efficient management of pa9ent records and workflows.
▪ Accurate and ac9onable insights into pa9ent journeys and medical histories.
▪ Tools to improve pa9ent communica9on and reduce administra9ve

overhead.
◦ How the Pla]orm Helps:

▪ Graph-based visualiza9ons and intelligent tagging of medical data streamline
workflows.

▪ Real-9me communica9on tools enhance collabora9on among healthcare
teams and with pa9ents.

▪ Integra9on with exis9ng EHR/EMR systems ensures con9nuity of care
without data silos.

2. Pa;ents:

◦ Demographics: Individuals seeking healthcare services, ranging from rou9ne check-
ups to chronic disease management.

◦ Needs and Challenges:
▪ Transparency and accessibility of medical records and appointments.
▪ Secure communica9on channels with healthcare providers.
▪ Timely updates and personalized care recommenda9ons.

◦ How the Pla]orm Helps:
▪ Centralized access to health records, chat history, and appointment details

empowers pa9ents.
▪ Secure telemedicine capabili9es ensure seamless interac9on with providers.
▪ Personalized insights enhance pa9ent engagement and autonomy.

Secondary Audience

1. Healthcare Administrators and Execu;ves:

◦ Roles: Clinic managers, hospital execu9ves, IT administrators.
◦ Needs and Challenges:

▪ Op9mized resource alloca9on and opera9onal efficiency.
▪ Insights into pa9ent trends and system performance for strategic decision-

making.
▪ Compliance with healthcare regula9ons and data security standards.

◦ How the Pla]orm Helps:
▪ Analy9cs dashboards provide real-9me data on pa9ent care and opera9onal

metrics.
▪ Scalable and compliant architecture reduces opera9onal risks.
▪ Simplified integra9ons lower the burden on IT teams and infrastructure.

2. Healthcare Technology Partners:

◦ Roles: Developers, integrators, and service providers building solu9ons for
healthcare ins9tu9ons.

◦ Needs and Challenges:
▪ Access to robust APIs for seamless integra9on.
▪ Scalable pla?orms to support custom solu9ons and services.

▪ Reliable and compliant backend infrastructure.
◦ How the Pla]orm Helps:

▪ FHIR-compliant APIs enable smooth interoperability.
▪ Modular architecture supports extensibility for custom applica9ons.
▪ Secure and resilient infrastructure ensures reliability for third-party

applica9ons.
Ter;ary Audience

1. Regulatory and Compliance Bodies:

◦ Needs and Challenges:
▪ Transparent systems for data security, privacy, and regulatory adherence.
▪ Ability to audit healthcare providers’ systems and prac9ces.

◦ How the Pla]orm Helps:
▪ Built-in compliance with HIPAA, GDPR, and other regula9ons ensures

alignment with industry standards.
▪ Secure audit logs provide traceability and transparency for compliance

reviews.
2. Researchers and Data Analysts:

◦ Needs and Challenges:
▪ Access to de-iden9fied, structured datasets for research and analysis.
▪ Tools to visualize and analyze pa9ent trends and outcomes.

◦ How the Pla]orm Helps:
▪ Advanced analy9cs capabili9es provide ac9onable insights for research.
▪ Privacy-preserving mechanisms ensure ethical data handling for academic

and clinical studies.
Conclusion

By addressing the dis9nct needs of these audiences, the pla?orm creates a holis9c ecosystem that
empowers every stakeholder to operate more effec9vely, securely, and transparently. This targeted
approach ensures maximum impact, broad adop9on, and scalability across the healthcare sector.

1.8 Compe9tors Landscape

The healthcare technology space, par9cularly in the realm of pa9ent data management and
healthcare workflows, is highly dynamic, yet rela9vely limited when it comes to comprehensive

pla?orms that effec9vely integrate advanced features like real-9me data processing, graph-based
pa9ent journey mapping, and interoperability. The compe99on primarily consists of a few well-
established players that tackle por9ons of the healthcare ecosystem, but none fully address the
breadth and depth of challenges that this pla?orm does.

Limited Compe;;on

While there are various players in healthcare technology and electronic health records (EHR), very
few offer a unified approach to solving fragmented data, pa9ent journey mapping, and real-9me
decision-making in a way that seamlessly integrates mul9ple data systems. Exis9ng solu9ons
typically focus on one or two components, such as medical coding, pa9ent records, or telemedicine,
but fail to create a comprehensive ecosystem that serves clinicians, administrators, and pa9ents
with high interoperability and innova9ve tools. Compe9tors like Epic Systems, Cerner (now part of
Oracle), Allscripts, and Athenahealth provide tradi9onal EHR/EMR solu9ons, but they are ojen
cri9cized for their complexity, outdated interfaces, lack of integra9on across disparate systems, and
slow adapta9on to emerging technologies like machine learning and real-9me data analy9cs.

These legacy systems typically struggle with:

• Fragmented data that doesn't provide a unified view of the pa9ent’s journey.
• Lack of user-friendly, intui9ve interfaces for clinicians.
• Complex and siloed workflows that slow down clinical decision-making.
• Limited integra9on with emerging technologies like AI, NLP, and real-9me communica9on.

By contrast, this pla?orm innovates by offering a graph database for pa;ent journey tracking, real-
;me data integra;on, advanced NLP for documenta;on, and telemedicine workflows that are not
only easier to use but more effec9ve in reducing administra9ve burden and improving pa9ent care
outcomes.

Innova;on in the Face of Compe;;on

While innova9on in the healthcare space can be daun9ng for both users and investors due to the
inherent complexi9es and regulatory requirements, this pla?orm capitalizes on disrup9ve
technologies to solve problems that have long plagued the industry. Healthcare systems are ojen
slow to adopt new technologies, but those that do can gain a significant compe99ve advantage. This
pla?orm embraces innova9on to differen9ate itself from tradi9onal EHR/EMR systems by focusing
on streamlined user experiences, advanced data interoperability, and real-;me decision support
tools. Rather than simply upda9ng exis9ng workflows, it is crea9ng new paradigms for managing
and u9lizing pa9ent data.

The integra9on of medical coding systems (ICD, SNOMED CT, LOINC) directly into the pla?orm's
data layer ensures regulatory compliance from day one, while the use of a graph database allows
for much richer, flexible data models that facilitate advanced analy9cs and more personalized care.
This is an essen9al differen9ator, as current systems struggle to provide a true, holis9c view of
pa9ent history due to fragmented, siloed data across mul9ple systems.

The real-;me messaging capabili;es provided by ZeroMQ will further set this pla?orm apart by
enabling instant communica;on across the network of clinicians, administrators, and pa9ents—
something tradi9onal EHR systems fail to provide effec9vely.

What Makes This Product Be_er?

While current solu9ons may include features such as telemedicine, pa9ent record management, or
clinical documenta9on, this pla]orm does a few key things significantly be_er:

1. Holis;c Pa;ent Journey Mapping: Tradi9onal EHR systems track pa9ent records but don't
represent a pa9ent’s journey in a dynamic, interconnected way. The use of a graph database
enables the pla?orm to provide a comprehensive, flexible view of the pa9ent’s medical
history, interac9ons, and care plan, allowing for more effec9ve decision-making.

2. Seamless Integra;on of Telemedicine: While many pla?orms integrate telemedicine as an
add-on feature, this pla?orm has designed telemedicine workflows to be a central pillar of
the pla]orm, enabling more intui9ve, efficient, and seamless remote care.

3. Real-Time Data Integra;on: The ability to incorporate and process real-9me data from
mul9ple sources—including telemedicine interac9ons, pa9ent devices, and clinical notes—is
crucial in improving decision-making and pa9ent outcomes. Compe9tors ojen fail to do this
effec9vely, leaving gaps in the pa9ent care con9nuum.

4. Natural Language Processing (NLP) for Documenta;on: While some healthcare solu9ons
include NLP, this pla?orm’s advanced NLP for voice-to-text clinical documenta9on aims to
cut down on clinician workload, improving the efficiency and accuracy of documenta9on
without sacrificing usability.

5. Interoperability with Emerging Healthcare Standards: The FHIR-compliant API layer ensures
the pla?orm can easily integrate with exis9ng healthcare systems, posi9oning it as a scalable
solu9on for hospitals, clinics, and other healthcare providers looking to modernize without
losing the ability to interface with legacy systems.

Compe;;ve Advantage and Investment Opportunity

For investors, this pla?orm represents a highly a_rac;ve opportunity. Not only does it address
core, unmet needs in the healthcare industry, but it also integrates cunng-edge technologies that
can grow with the needs of the market. While compe9tors exist, most are entrenched in legacy
technologies and workflows that leave room for innova9on in areas such as pa9ent journey
mapping, telemedicine, real-9me analy9cs, and natural language processing. This pla?orm is
posi9oned to leapfrog exis9ng systems and offer a more modern, efficient, and user-friendly
solu;on for managing pa9ent data and clinical workflows.

Addi9onally, the market demand for improved telemedicine solu9ons, real-9me data processing,
and interoperability in healthcare systems con9nues to increase, especially in the wake of the
COVID-19 pandemic. This pla?orm is uniquely posi9oned to meet these growing demands,
providing a sustainable compe;;ve edge and increasing market share in an industry that is ripe for
disrup9on.

By focusing on a narrow set of high-impact features and execu9ng them excep9onally well, the
pla?orm will create significant value for healthcare providers, clinicians, and pa9ents alike, driving
adop9on and return on investment.

Requirements Overview

Func9onal Requirements

1. Core System Components

1.1 Database Layer (PostgreSQL, pgRou;ng, pgPartman, PostGIS, pgVector, TimescaleDB,
pgCrypto, Medical Codes)

Purpose:
The database layer will handle the storage and processing of pa9ent data, medical events, and
rela9onships, using PostgreSQL extensions for graph opera9ons, 9me-series data, data par99oning,
encryp9on, vector embeddings, and medical code management.

MVP Scope:

• PostgreSQL: Store core pa9ent data (demographics, encounters, diagnoses) in rela9onal
tables, ensuring HIPAA compliance.

• pgRou;ng: Enable graph traversal for pa9ent journey mapping, such as finding treatment
paths, rela9onships between diagnoses, and prescrip9ons.

• PostGIS: Store and query geospa9al data for loca9ons such as clinic facili9es and pa9ent
addresses.

• pgVector: Store pa9ent-related data embeddings for efficient similarity search and advanced
search func9onality in medical records.

• pgPartman: Par99on large tables based on 9me or ID to improve performance and
scalability.

• TimescaleDB: Store 9me-series data (e.g., pa9ent vitals, medica9on schedules) for efficient
queries.

• pgCrypto: Encrypt sensi9ve pa9ent data, ensuring that all Personally Iden9fiable
Informa9on (PII) is secure and compliant with HIPAA.

• Medical Codes Integra;on: Integrate standard medical codes (e.g., ICD-10, SNOMED CT,
LOINC) to structure and standardize diagnoses, treatments, and procedures.

Non-MVP Scope:

• Advanced Graph Algorithms: Implement mul9-dimensional pathfinding or predic9ve
analysis for pa9ent outcomes using pgRou9ng.

• PostGIS Advanced Use: Use richer geospa9al data for proximity searches and to analyze the
loca9on of healthcare providers rela9ve to pa9ents.

• Vector Search for AI Models: Leverage AI-driven search algorithms using pgVector for
advanced pa9ent record retrieval.

• Par;;oning by ID for High-Traffic Tables: Dynamically par99on tables based on high-traffic
events to op9mize large-scale data opera9ons.

• Advanced Encryp;on and Key Management: Implement advanced encryp9on schemes,
including key rota9on and access policies for pa9ent data.

• Comprehensive Medical Codes Use: Implement extended medical coding standards for
more advanced repor9ng, audi9ng, and analy9cs.

1.2 Backend Layer (Rust)

Purpose:
The backend (in Rust) will handle complex business logic, including pa9ent data retrieval, graph
traversal, 9me-series analysis, and cryptographic opera9ons.

MVP Scope:

• Graph Opera;ons: Use Rust to process pa9ent journeys through pgRou9ng, including
rela9onships between diagnoses, prescrip9ons, and encounters.

• FHIR Integra;on: Use Rust libraries (such as sir-rs) to interface with external healthcare
systems for data sharing.

• Search: Implement full-text and vector-based search for pa9ent data using pgVector.
• Time-series Analysis: Use TimescaleDB in Rust to handle pa9ent 9me-series data such as

vitals or clinical observa9ons.
• Encryp;on: Handle cryptographic opera9ons for securing sensi9ve pa9ent data within the

backend.

Non-MVP Scope:

• Real-Time Data Integra;on: Process real-9me sensor or device data using Rust.
• AI-based Predic;ons: Implement AI-driven predic9ons for pa9ent outcomes or treatment

recommenda9ons based on historical data.

1.3 API Layer (Go)

Purpose:
Expose REST APIs for interac9ng with pa9ent data, including features like pa9ent journey retrieval,
chat integra9on, and FHIR-compliant endpoints.

MVP Scope:

• REST APIs: Implement core APIs like GET /pa9ents/{id}, GET /pa9ents/{id}/journey, POST /
pa9ents, GET /search.

• FHIR-Compliant APIs: Provide core FHIR endpoints (e.g., Pa9ent, Encounter, Observa9on) for
integra9on with external medical systems.

• Basic Chat API: Provide APIs to send and receive messages between clinicians and pa9ents.
• ZeroMQ Integra;on: Handle real-9me messaging for chat services between backend

components.

Non-MVP Scope:

• GraphQL API: Provide a flexible query interface with GraphQL.
• Extended FHIR Models: Implement models for lab results, medica9on administra9on, and

clinical observa9ons.
• Mul;media Support: Enable chat APIs to support image/video sharing for a richer

communica9on experience.

1.4 Messaging and Communica;on (ZeroMQ & Kaha)

Purpose:
Enable real-9me messaging for chat and event streaming for pa9ent data flow. ZeroMQ will handle
lightweight messaging, while Kapa will manage high-throughput, fault-tolerant event streaming.

MVP Scope:

• ZeroMQ: Use ZeroMQ for low-latency, high-throughput messaging between services,
specifically for chat.

• Kaha: Handle real-9me event streaming for data consistency across services, propaga9ng
events like new diagnoses, encounters, or messages.

Non-MVP Scope:

• Kaha for Advanced Event Processing: Use Kapa for batch data processing, aggrega9ng
pa9ent visits or triggering event-driven workflows.

• ZeroMQ for No;fica;ons: Implement ZeroMQ to push real-9me no9fica9ons beyond chat
(e.g., appointment reminders, alerts).

2. Frontend Layer (Angular, D3.js)

2.1 Frontend (Angular)

Purpose:
Provide a clean and responsive UI for clinicians, pa9ents, and administrators to view pa9ent data
and interact with the system.

MVP Scope:

• Clinician Dashboard: Display pa9ent journeys, medical histories, encounters, and diagnos9c
informa9on.

• Pa;ent Dashboard: Enable pa9ents to view their medical records, prescrip9ons,
appointments, and communicate with clinicians.

• Basic Search: Implement simple search func9onality for querying pa9ent data.

Non-MVP Scope:

• Role-Based Dashboards: Customize dashboards for different user roles (e.g., clinician,
pa9ent, admin).

• Advanced Search: Include filtering and full-text indexing for amributes like diagnosis,
treatment, and medica9ons.

2.2 Data Visualiza;ons (D3.js)

Purpose:
Use D3.js to present complex visualiza9ons of pa9ent data, including treatment journeys, 9melines,
and predic9ve analy9cs.

MVP Scope:

• Basic Graphs: Visualize pa9ent journeys and connec9ons between key medical events (e.g.,
diagnoses, treatments).

• Treatment Timeline: Show a 9meline of pa9ent treatments and associated medical events.

Non-MVP Scope:

• Predic;ve Visualiza;ons: Display risk predic9ons for condi9ons or events using D3.js.
• Interac;ve Visualiza;ons: Allow drill-down, zoom, and real-9me updates for more dynamic

data explora9on.
3. Features

3.1 Chat and Messaging System (ZeroMQ, Go)

Purpose:
Provide secure, real-9me communica9on between clinicians, pa9ents, and stakeholders.

MVP Scope:

• Basic Chat: Enable text-based messaging between clinicians and pa9ents for HIPAA-
compliant communica9on.

• ZeroMQ Messaging: Use ZeroMQ for real-9me communica9on.
Non-MVP Scope:

• Mul;media Chat: Allow clinicians and pa9ents to share documents, images, and videos.
3.2 Telemedicine (Go, ZeroMQ)

Purpose:
Support remote consulta9ons through video calls between clinicians and pa9ents.

MVP Scope:

• Basic Video Call: Implement basic video conferencing capabili9es for telemedicine sessions.
Non-MVP Scope:

• Telemedicine Workflow: Integrate scheduling, follow-ups, and treatment tracking into the
telemedicine workflow.

4. Authen;ca;on and Security

4.1 Authen;ca;on and Authoriza;on (Rust, Go)

Purpose:
Ensure secure authen9ca9on and authoriza9on within the pla?orm, with full compliance with
HIPAA and privacy standards.

MVP Scope:

• JWT Authen;ca;on: Implement secure JWT-based authen9ca9on and role-based access
control.

• Encryp;on: Use pgCrypto for encryp9ng sensi9ve data.

Non-MVP Scope:

• OAuth2/OpenID Connect: Implement integra9on with external iden9ty providers like Okta.
• Fine-Grained Access Control: Extend access control mechanisms to provide advanced

permissions on sensi9ve data.

Non-Func9onal Requirements

1. Scalability and Performance

• Horizontal Scalability: The system must support horizontal scalability to handle increasing
user traffic, data growth, and demand for real-9me services. Backend services, APIs,
messaging, and chat components should scale independently across mul9ple instances,
using containerized environments or virtual machines.

• Database Scaling: The PostgreSQL database will u9lize par99oning via the pg_partman
extension and 9me-series data management with TimescaleDB. The system will incorporate
PostGIS and pgvector for spa9al and vector-based queries. These solu9ons will be
complemented by caching mechanisms (e.g., Redis) to reduce database load and improve
response 9mes.

• Microservice Scalability: The architecture will ensure each service can scale independently.
Stateless services, such as REST APIs (built with Go), chat components (built with Go), and
messaging services (u9lizing ZeroMQ), will be containerized and orchestrated using
Kubernetes. This ensures seamless scaling, high availability, and resilience.

• Asynchronous Processing:
◦ Rust: For high-performance and low-latency tasks, such as data processing and real-

9me analy9cs, Rust will leverage Tokio or async-std for asynchronous processing.
These frameworks allow fine-grained control over concurrency, making them
suitable for CPU-bound tasks and efficient handling of asynchronous opera9ons.
Tokio is especially suited for scalable and high-performance network applica9ons,
which will be leveraged for real-9me data processing.

◦ Go: For scalable background tasks, such as sending no9fica9ons and data processing,
Go will u9lize frameworks like Go-Worker or Go-Rou;ne to handle thousands of
concurrent tasks efficiently. Go’s gorou9nes, which are lightweight and have low
overhead, will allow for the easy handling of highly concurrent opera9ons.

2. High Availability and Fault Tolerance

• Failover and Redundancy: Ac9ve-ac9ve or ac9ve-passive failover strategies will be
implemented for cri9cal components such as microservices, databases, and message brokers

(e.g., Kapa). Load balancing solu9ons, such as HAProxy or NGINX, will distribute traffic
evenly across available resources.

• Disaster Recovery: Automated disaster recovery procedures will be implemented to ensure
quick restora9on of cri9cal components (e.g., databases, Elas9csearch indices, and Kapa
data streams) in case of failure.

• Zero Down;me Deployments: Blue-green or rolling deployment strategies will be
implemented to ensure minimal disrup9on during updates. Deployment pipelines will
automate staging, tes9ng, and verifica9on before produc9on rollout, ensuring consistent
delivery and minimizing risk.

• Resiliency: Monitoring and automa9c service replacement strategies will be implemented
using Kubernetes health checks and distributed coordina9on tools like Consul to ensure
system up9me and availability.

3. Security and Compliance

• HIPAA Compliance: The system will be designed to meet HIPAA standards, ensuring
encryp9on of all sensi9ve data both at rest (using pgcrypto) and in transit (using TLS). The
system will implement robust access control mechanisms and audit logging to track all
interac9ons with sensi9ve data.

• Authen;ca;on & Authoriza;on: Authen9ca9on will be managed through JWT tokens for
stateless access control, with OAuth protocols for third-party integra9ons. RBAC (Role-Based
Access Control) will govern user permissions and service-to-service authen9ca9on.

• Encryp;on: The use of pgcrypto will ensure the encryp9on of sensi9ve data stored in
PostgreSQL. Communica9on between services will be secured with TLS to prevent
eavesdropping and data breaches.

• Vulnerability Scanning: Regular vulnerability scans will be performed using tools like OWASP
ZAP, SonarQube, and automated security tes9ng solu9ons to iden9fy risks early. Docker
image scanning will also be integrated into the CI/CD pipeline using tools such as Trivy or
Anchore.

4. Con;nuous Integra;on and Con;nuous Deployment (CI/CD)

• CI/CD Pipeline: The system will implement an automated CI/CD pipeline to handle the
building, tes9ng, and deployment of code across various environments (development,
staging, produc9on). Tools such as Jenkins, GitLab CI, or CircleCI will manage this pipeline.
◦ Containerized Deployments: All services will be containerized using Docker to

ensure consistent builds, and deployments will be orchestrated using Kubernetes.
Helm will be used to manage Kubernetes configura9ons.

◦ Automated Rollbacks: The CI/CD pipeline will support automa9c rollbacks in case of
deployment failure, u9lizing Kubernetes to replace problema9c instances.

◦ Sta;c Analysis and Test Coverage: Sta9c analysis tools like SonarQube, Bandit for
Python, and GoSec for Go will be integrated into the CI pipeline to ensure code
quality and security vulnerabili9es are caught early.

◦ Infrastructure as Code (IaC): Terraform will be used to define and automate the
provisioning of infrastructure, making it reproducible and scalable across different
environments.

5. Infrastructure and Configura;on Management

• Infrastructure as Code (IaC): Terraform will be used to automate the provisioning and
management of cloud resources, including databases, networking, and other cri9cal
components. This will ensure that infrastructure is reproducible, scalable, and easily
configurable.

◦ Environment Configura;on: Terraform will manage environment-specific
configura9ons, such as security groups, networking, and cloud resources, ensuring
consistency and ease of scaling.

◦ Configura;on Dril Preven;on: Ansible will be used for configura9on management
to prevent drij and ensure that deployed instances adhere to the desired
configura9on state.

• Containeriza;on & Orchestra;on: All microservices, including backend services (Go, Rust),
chat (Go), messaging (ZeroMQ), and the ELK stack, will be containerized using Docker. These
containers will be managed using Kubernetes, ensuring efficient orchestra9on, scaling, and
resource management.

6. Observability and Monitoring

• Centralized Logging and Metrics:

◦ The system will implement a centralized logging solu;on using the ELK Stack
(Elas9csearch, Logstash, Kibana) for storing and visualizing logs from all services.
Logs will be aggregated and processed by Fluentd, a highly flexible log forwarding
tool, to centralize and filter log data before sending it to Elas9csearch.

◦ StatsD will be integrated for applica9on-level metrics collec9on and forwarding to
Prometheus, where metrics such as request counts, error rates, and latency can be
collected and analyzed. These metrics will then be visualized through Grafana.

◦ Prometheus will collect real-9me applica9on and infrastructure metrics. Grafana will
be used to create detailed dashboards to visualize these metrics, with automated
alerts triggered for abnormal behavior or performance degrada9on.

◦ OpenTelemetry will be used to collect distributed tracing, logs, and metrics from
services, providing visibility into service interac9ons and performance bomlenecks.
The collected data will be sent to a tracing backend, such as Jaeger or Zipkin, for
analysis and visualiza9on.

• Service Monitoring:

◦ Prometheus will monitor key applica9on metrics such as latency, error rates, and
system resource usage. Grafana will be used for crea9ng visual dashboards that

display this real-9me data. Alerts will be configured using Prometheus Alertmanager
to no9fy the opera9ons team of any issues that require immediate amen9on.

◦ The system will include automa9c health checks for services, monitored by
Kubernetes and custom health check endpoints to ensure services are func9oning
correctly. Failed services will be automa9cally replaced by Kubernetes.

• Distributed Tracing:

◦ OpenTelemetry will be integrated into the system to collect telemetry data,
including distributed traces, logs, and metrics. This data will provide insights into
how requests flow through the system, allowing the iden9fica9on of bomlenecks,
performance issues, and errors in a distributed microservices environment.

• Health Checks: Each microservice will expose health check endpoints that can be monitored
by Kubernetes or cloud-specific services (e.g., AWS CloudWatch, Google Stackdriver) to
ensure service up9me and availability.

7. Deployment and Environment Support

• Mul;-cloud and Hybrid Deployment:

◦ The system will be designed for deployment to cloud environments such as AWS,
GCP, and Azure, as well as on-premise servers. This will allow flexibility in choosing
deployment op9ons while ensuring consistent system behavior across different
environments.

◦ Terraform and Kubernetes will ensure seamless deployment and management of
services, allowing the system to scale easily in the cloud or on-premise servers.

• Containerized Deployments:

◦ All services, including backend services (Go, Rust), chat (Go), messaging (ZeroMQ),
and the ELK stack, will be containerized using Docker for consistent builds.
Kubernetes will orchestrate the deployment, scaling, and management of these
containers.

• CI/CD for Cloud Environments:

◦ The CI/CD pipeline will be designed to support deployment to AWS, GCP, Azure, or
standalone servers, ensuring that the system can be deployed and managed
consistently across different environments. Cloud-na9ve monitoring tools like AWS
CloudWatch or Google Stackdriver will be used to monitor deployed services.

Compliace and Standards

1. Health Informa;on Privacy and Security (HIPAA) Compliance

• Data Encryp;on: All sensi9ve health informa9on (PHI) will be encrypted both at rest and in
transit. The system will leverage industry-standard encryp9on algorithms such as AES-256

for data at rest and TLS 1.2+ for securing data in transit. pgcrypto will be used to encrypt
sensi9ve data stored in PostgreSQL databases, and communica9on between services will be
secured using TLS.

• Access Control: Access to PHI will be controlled using Role-Based Access Control (RBAC) to
ensure that only authorized users and services can access or modify sensi9ve data.
Authen9ca9on will be implemented using OAuth 2.0 and JWT (JSON Web Tokens) to provide
secure, stateless access control mechanisms.

• Audit Logging: The system will maintain detailed audit logs of all user and service ac9ons
involving PHI. These logs will capture informa9on about who accessed or modified PHI,
when, and why. These logs will be centralized and stored securely using the ELK Stack
(Elas9csearch, Logstash, Kibana) for easy querying and visualiza9on. Compliance with
HIPAA’s audit trail requirements will be ensured by leveraging Fluentd and other centralized
logging tools.

• Data Minimiza;on: Only the minimum necessary data required to perform a given task will
be collected, processed, and stored. This includes limi9ng the scope of PHI stored in the
database to avoid excessive data reten9on.

• Data Backup and Disaster Recovery: HIPAA requires that PHI is protected in the event of a
disaster. The system will implement automated backups of encrypted PHI, with backup data
stored in geographically separated data centers. Disaster recovery plans will be tested
regularly to ensure that data can be recovered within the required recovery 9me objec9ves
(RTO) and recovery point objec9ves (RPO).

• Data Segrega;on: Sensi9ve data will be logically segregated within the system to prevent
unauthorized access or accidental exposure. This includes isola9ng PHI from non-sensi9ve
data within databases and applica9on layers, as well as enforcing strict access control to
different data stores.

2. Fast Healthcare Interoperability Resources (FHIR)

• FHIR API Standards: The system will implement FHIR-compliant APIs for interoperability
with other healthcare systems. These APIs will adhere to the latest version of the FHIR
specifica9on, ensuring seamless data exchange between healthcare providers, third-party
applica9ons, and external systems. The FHIR resource types, such as Pa9ent, Prac99oner,
Observa9on, and Encounter, will be used to ensure compa9bility with external systems.

• Data Mapping and Transforma;on: The system will provide tools for mapping and
transforming data between different formats, such as FHIR and internal data models (e.g.,
PostgreSQL). Data will be validated and normalized according to the FHIR specifica9ons to
ensure consistent interoperability.

• FHIR Valida;on: The system will include automated tools to validate FHIR resources against
the standard’s specifica9ons, ensuring that the data exchanged via the API meets FHIR
standards. This will be achieved using libraries and frameworks such as HAPI FHIR or other
open-source FHIR validators.

• FHIR Security Compliance: FHIR APIs will be secured using modern encryp9on methods
(e.g., TLS) and access control mechanisms such as OAuth 2.0 and JWT to authen9cate and

authorize users and systems. This will ensure that all data exchanged over the FHIR API is
protected and only accessible by authorized en99es.

• Audit and Traceability: All FHIR API transac9ons, including both read and write opera9ons,
will be logged and auditable to ensure compliance with healthcare regula9ons such as
HIPAA. Fluentd, Elas;csearch, and Kibana will be used to aggregate and analyze logs for
audit purposes.

3. Health Level 7 (HL7) Compliance

• HL7 Message Standards: The system will support the HL7 message standards, including HL7
v2.x and HL7 v3. These standards are essen9al for interoperability between healthcare
systems. The system will support both HL7 v2.x for real-9me messaging (e.g., pa9ent
registra9on, lab results) and HL7 v3 for document-based messaging (e.g., discharge
summaries, clinical documents).

• HL7 Integra;on: The system will integrate with exis9ng healthcare applica9ons using HL7
message formats. This will include support for parsing, genera9ng, and sending HL7
messages in real-9me to other healthcare systems. The integra9on will be achieved through
middleware or message brokers like Kaha or ZeroMQ to ensure reliability and performance.

• HL7 Message Security: HL7 messages will be encrypted and secured during transmission,
following industry standards. TLS will be used for securing HL7 messages over the network,
and access to sensi9ve health data embedded in HL7 messages will be controlled using
RBAC and OAuth 2.0 for authen9ca9on and authoriza9on.

• HL7 Data Transforma;on: The system will include a layer for transforming data between HL7
formats and other internal data formats (e.g., FHIR, PostgreSQL). Data transforma9on tools
will ensure that incoming HL7 messages can be properly parsed and converted into a format
that can be stored in the database or processed by the system.

• HL7 Compliance Audi;ng: Detailed logs will be maintained for every HL7 message
processed, allowing healthcare organiza9ons to audit the flow of data and track compliance
with relevant regula9ons. These logs will be stored in a centralized logging solu9on, such as
the ELK Stack or Fluentd, and will include informa9on about the sender, recipient, and
message content.

4. Other Regulatory Compliance

• GDPR: For systems that deal with data subjects from the European Union, the system will
comply with General Data Protec;on Regula;on (GDPR). This includes providing data
subject rights (e.g., data access, rec9fica9on, dele9on), ensuring data privacy, and
implemen9ng strong data protec9on measures. User data will be processed only with
consent, and all personal data will be anonymized or pseudonymized where applicable.

• SOC 2 Compliance: The system will ensure that it follows SOC 2 best prac9ces, focusing on
security, availability, processing integrity, confiden9ality, and privacy. This includes
performing regular security assessments, ensuring that all data is handled with the highest
level of confiden9ality, and conduc9ng audits of user access logs and system events.

• Data Sovereignty: The system will comply with data sovereignty requirements, ensuring that
data is stored in regions that meet local regulatory and legal requirements. This will be
managed using cloud pla?orms like AWS, Azure, or GCP, where regions and data centers
comply with local data storage laws.

5. Repor;ng and Documenta;on for Compliance

• Compliance Reports: The system will generate periodic compliance reports to demonstrate
adherence to regula9ons such as HIPAA, FHIR, and HL7. These reports will include details on
data access, data processing ac9vi9es, and security measures taken to protect sensi9ve
data.

• Audit Trails: The system will maintain an immutable audit trail of all ac9ons performed on
sensi9ve data. This includes ac9ons performed by users, system services, and automated
processes. The audit trail will be stored securely in Elas;csearch and will be accessible via
Kibana for querying and analysis.

• Compliance Cer;fica;ons: The system will work towards obtaining relevant cer9fica9ons
such as SOC 2, ISO 27001, and HIPAA cer9fica9on. The system will be con9nuously assessed
and tested for compliance, and all team members will be trained on compliance-related
requirements.

Assump9ons and Constraints

1. Assump;ons

• Technology Stack:

◦ Programming Languages: Rust, Go, and Python will be used for backend services, CLI
tools, task processing, and helper scripts, ensuring performance, concurrency, and
ease of extensibility.

◦ Message Brokers and Queuing:
▪ Kaha: Assumed to be the primary choice for real-9me data streaming and

event-driven architecture.
▪ Zookeeper: Will support Kapa’s cluster management and coordina9on

needs.
▪ ZeroMQ: Will handle lightweight, high-speed messaging for inter-process

communica9on, par9cularly in chat and microservice orchestra9on
scenarios.

◦ Observability:
▪ ELK Stack (Elas;csearch, Logstash, Kibana): Provides centralized logging,

real-9me log aggrega9on, and monitoring.
▪ Fluentd: Assumes the role of a data collector and log forwarder, feeding

structured logs into Elas9csearch.
▪ StatsD and OpenTelemetry: Used for collec9ng and expor9ng metrics and

traces for system-wide observability.

◦ Database Extensions:
▪ hstore: Enables flexible storage of semi-structured key-value data.
▪ pg_partman: Facilitates par99on management for large tables, op9mizing

read/write performance and storage efficiency.
▪ pg_stat_statements: Tracks SQL execu9on sta9s9cs for query performance

analysis.
▪ pg_trgm: Powers fast text searches and similarity matching, par9cularly

useful for user-facing search interfaces.
▪ pgcrypto: Ensures data security with cryptographic func9ons like hashing

and encryp9on.
▪ plpgsql: Supports custom procedural logic within the database.
▪ postgres_fdw: Enables federated querying of external PostgreSQL instances.
▪ ;mescaledb: Op9mizes performance for 9me-series data analy9cs, essen9al

for observability and 9me-driven datasets.
▪ vector: Provides vectorized storage and search for AI/ML tasks, enabling

similarity searches for embeddings.
◦ Front-End Technologies:

▪ Angular and D3.js: Assumed to power the web interface, dashboards, and
data visualiza9on.

◦ Helper Scripts and ML/AI:
▪ Python: U9lized for building helper scripts, ML/AI models, and workflows,

leveraging libraries such as PyTorch, NumPy, and Pandas.
• Cloud and Infrastructure:

◦ The pla?orm will be deployable on AWS, GCP, Azure, or standalone servers.
◦ Terraform and Ansible will be used for infrastructure as code (IaC) and configura9on

management, respec9vely.
◦ CI/CD pipelines will automate deployments, ensuring rapid itera9ons and stability.

• Interoperability and Compliance:

◦ The system will integrate with external healthcare systems and comply with industry
standards like HIPAA, FHIR, and HL7.

• Real-Time Data Processing:

◦ Kapa ensures fault-tolerant, scalable real-9me data streaming, supported by
Zookeeper for coordina9on.

◦ PostgreSQL extensions like ;mescaledb and vector enable advanced real-9me
analy9cs and ML/AI data handling.

• Performance and Scalability:

◦ The system assumes scalability through Kapa-based pipelines, database par99oning,
and op9mized queries using pg_trgm and pg_stat_statements.

◦ Rust and Go services will handle compute-heavy or latency-sensi9ve tasks,
maximizing efficiency.

2. Constraints

• Complex Tooling:

◦ Managing and orchestra9ng a stack that includes Kapa, Zookeeper, ELK, Fluentd,
ZeroMQ, and PostgreSQL extensions introduces opera9onal complexity. Exper9se is
required for configura9on, maintenance, and troubleshoo9ng.

• Latency and Performance:

◦ Real-9me analy9cs depend on op9mizing the en9re data pipeline from Kapa to
PostgreSQL (via ;mescaledb, vector, and pgcrypto) while minimizing latency in
Elas9csearch and frontend visualiza9ons.

• Integra;on and Dependencies:

◦ Dependencies on external PostgreSQL instances (via postgres_fdw) and third-party
tools like Fluentd and OpenTelemetry may introduce points of failure or addi9onal
latency.

• Data Security:

◦ The system’s reliance on pgcrypto for cryptographic opera9ons assumes robust key
management prac9ces, adding an opera9onal burden.

• Resource Requirements:

◦ Elas9csearch and Kapa can be resource-intensive, requiring careful provisioning and
monitoring to ensure cost-effec9veness and performance.

• Observability Overhead:

◦ Implemen9ng a comprehensive observability stack (ELK, Fluentd, OpenTelemetry,
StatsD) may add addi9onal processing overhead, especially for high-throughput
environments.

◦
3. Dependencies

• PostgreSQL Extensions:

◦ Con9nued community support for pg_partman, pgcrypto, ;mescaledb, vector, and
others is cri9cal for func9onality. Updates or depreca9ons could impact system
opera9ons.

• Message Brokers:

◦ Kapa and Zookeeper require proper scaling and monitoring to handle peak loads
without degrada9on.

• Third-Party Observability Tools:

◦ Fluentd, OpenTelemetry, and StatsD must remain compa9ble with the broader stack
to ensure reliable monitoring and aler9ng.

• Infrastructure Automa;on:

◦ The success of IaC and configura9on management with Terraform and Ansible relies
on the availability of supported providers and modules.

• Frontend and Visualiza;on:

◦ Angular and D3.js are constrained by the responsiveness and complexity of data
being visualized, which may require careful op9miza9on.

Priori9za9on and Feature Significance

The priori9za9on of pla?orm features is essen9al for defining the delivery 9meline while balancing
technical feasibility, market demand, and the resolu9on of cri9cal pain points in the healthcare
industry. Below is a detailed breakdown of the pla?orm’s key features, their priori9za9on, and the
jus9fica9on for their inclusion in either the Minimum Viable Product (MVP) or post-MVP phases.

Features Priori;zed for MVP

1. Graph Database for Pa;ent Journey

• Priority: High
• Delivery: MVP
• Jus;fica;on: Provides the founda9onal structure for represen9ng pa9ent data as

interconnected nodes, enabling a unified view of pa9ent history and real-9me decision-
making. This feature addresses the core challenge of fragmented data in healthcare systems.

2. Master Pa;ent Index (MPI)

• Priority: High
• Delivery: MVP
• Jus;fica;on: Ensures pa9ent data consistency across disparate systems, elimina9ng

duplicate records and improving safety. It is cri9cal for seamless integra9on with exis9ng
EHR/EMR systems.

3. Search, Tagging, and Metadata Management

• Priority: High
• Delivery: MVP
• Jus;fica;on: Efficient data retrieval and organiza9on are essen9al for clinicians and

administrators to access pa9ent records quickly, improving workflow efficiency and reducing
errors.

4. NLP and Voice-to-Text for Clinical Documenta;on

• Priority: High
• Delivery: MVP
• Jus;fica;on: Reduces manual documenta9on 9me, improves accuracy, and enhances

usability for clinicians, directly addressing one of the most 9me-consuming aspects of
modern healthcare workflows.

5. Telemedicine Integra;on

• Priority: High
• Delivery: MVP
• Jus;fica;on: Remote care capabili9es are in high demand post-pandemic, making this

feature cri9cal for market entry and pa9ent engagement. Seamless telemedicine workflows
will differen9ate the pla?orm.

6. Role-Based Dashboards (Clinician, Admin, Pa;ent Views)

• Priority: High
• Delivery: MVP
• Jus;fica;on: User-friendly interfaces tailored to specific roles ensure that all stakeholders

can access relevant data efficiently, driving adop9on and sa9sfac9on.
7. FHIR Integra;on and API Layer (Go)

• Priority: High
• Delivery: MVP
• Jus;fica;on: Core FHIR-compliant APIs for integra9on with external healthcare systems

ensure that pa9ent data is easily shared and standardized across systems. This is crucial for
system interoperability.

8. ZeroMQ Messaging for Real-Time Communica;on

• Priority: High
• Delivery: MVP
• Jus;fica;on: Low-latency messaging to facilitate real-9me communica9on between the

pla?orm’s services, such as chat features between clinicians and pa9ents, ensuring that
urgent mamers are addressed promptly.

9. Medical Codes (ICD, CPT, SNOMED CT, LOINC)

• Priority: High
• Delivery: MVP
• Jus;fica;on: Provides support for common clinical coding systems to capture diagnoses,

procedures, and clinical findings. This func9onality enhances the accuracy and completeness
of clinical records while suppor9ng regulatory compliance, billing processes, and data

exchange across healthcare systems. It is crucial for compliance with healthcare standards
and reimbursement processes.

Features for Post-MVP Delivery

1. Advanced Analy;cs and Predic;ve ML/AI

• Priority: Medium
• Delivery: Post-MVP
• Jus;fica;on: High-impact predic9ve models require mature data pipelines and historical

data. Implemen9ng this feature post-MVP allows for itera9ve refinement with real-world
data.

2. Graph Opera;ons for Advanced Data Manipula;on

• Priority: Medium
• Delivery: Post-MVP
• Jus;fica;on: Advanced graph analysis (such as mul9-dimensional pathfinding or treatment

outcome predic9ons) will add more complexity, which can be delivered ajer the
founda9onal graph database and pa9ent journey features are in place.

3. Command-Line Interface (CLI) for Administra;on

• Priority: Medium
• Delivery: Post-MVP
• Jus;fica;on: Useful for system troubleshoo9ng and advanced opera9ons, but not essen9al

for the pla?orm's ini9al func9onality.
4. Plugin Architecture for Extendability

• Priority: Medium
• Delivery: Post-MVP
• Jus;fica;on: Enables customiza9on and scalability, allowing third-party developers to add

modules or integrate new services as needed. This can be implemented ajer the core
features are solidified.

5. Bulk Data Opera;ons and Migra;on Tools

• Priority: Low
• Delivery: Post-MVP
• Jus;fica;on: These tools are useful for large-scale data migra9ons but do not affect daily

workflows in the ini9al pla?orm launch.
6. Advanced AI-Based Recommenda;ons for Treatments

• Priority: Medium
• Delivery: Post-MVP

• Jus;fica;on: Advanced recommenda9on engines can offer personalized treatment
sugges9ons based on historical data, though they require robust datasets and thorough
valida9on to ensure clinical reliability.

Jus;fica;on for Priori;za;on

• Market Demand: Features like telemedicine, pa9ent journey tracking, and real-9me chat
address urgent market needs, making them cri9cal for amrac9ng early adopters and
differen9a9ng the pla?orm in the compe99ve healthcare tech space. Features related to
medical codes (ICD, CPT, SNOMED CT, LOINC) also cater to regulatory and clinical
requirements.

• Impact: High-priority features provide immediate value to clinicians and administrators by
solving key pain points, such as fragmented data, inefficient workflows, and 9me-intensive
documenta9on. Features that enable interoperability (FHIR and medical codes) are crucial
for long-term pla?orm success.

• Feasibility: Post-MVP features such as predic9ve analy9cs, advanced graph opera9ons, and
AI-based recommenda9ons require more advanced data processing capabili9es and itera9ve
model development. By delivering these incrementally, the pla?orm can refine its offerings
based on real-world usage.

Conclusion

This phased delivery approach ensures a strong MVP launch with high-impact features that address
immediate market needs, while allowing for the introduc9on of advanced capabili9es in subsequent
releases. By balancing short-term usability and long-term innova9on, the pla?orm is set to provide a
clear roadmap for investors, customers, and stakeholders, ensuring it delivers both immediate value
and scalable, advanced solu9ons over 9me.

System Design and Archietcture

3.1 High-Level System Architecture

This sec9on describes the high-level system architecture for a web-based applica9on that
implements mul9ple layers, each with specific responsibili9es and communica9on protocols.
The system is designed with strong adherence to SOLID principles, ensuring scalability,
maintainability, and flexibility. The architecture also follows Domain-Driven Design (DDD) to
ensure clear separa9on of concerns, Single Responsibility, and minimized coupling between
components. We leverage various protocols, such as WebSockets, REST, gRPC, Kapa, ZeroMQ,
and PostgreSQL, each selected for its specific advantages in mee9ng the performance,
scalability, and real-9me communica9on needs of the system.

3.1.1 Frontend

The Frontend is responsible for user-facing features such as dashboards, data visualiza9ons, and
interac9ve elements. It is built using Angular for dynamic views and D3.js for data-driven
visualiza9ons. This layer communicates with the API Layer via REST API and WebSocket
protocols.

• REST API: The Frontend Layer uses REST API for standard data retrieval requests (e.g.,
pa9ent records, clinician informa9on). This protocol is stateless, simple, and widely
used, making it ideal for handling CRUD opera9ons and HTTP-based communica9on.

• WebSocket: For real-9me interac9ons, such as live data updates and messaging, the
Frontend Layer leverages WebSocket to establish a persistent connec9on to the API
Layer and Chat API Layer. WebSocket provides low-latency, bidirec9onal
communica9on, which is essen9al for real-9me features like instant updates and alerts.

By keeping the Frontend Layer focused on UI/UX responsibili9es and communica9on with other
layers, we ensure that it adheres to the Single Responsibility Principle (SRP). Real-9me updates
are efficiently handled via WebSocket, which ensures a seamless user experience.

3.1.2 API

The API, built in Go, acts as the central communica9on hub for various components, bridging
the Frontend Layer, Graph Layer, Messaging Layer, Chat API Layer, and Database Layer. This
layer handles user session management, rou9ng, authen9ca9on, and external API calls.

• REST API: Exposes REST API endpoints for standard CRUD opera9ons. It serves as a
simple, HTTP-based protocol for communica9on between the Frontend Layer and
backend components.

• WebSocket: Provides a WebSocket endpoint for real-9me messaging and event updates
(e.g., pa9ent status changes, clinician collabora9on).

• gRPC: The API Layer communicates with the Graph Layer using gRPC, enabling efficient,
binary communica9on for complex opera9ons like graph traversal and FHIR integra9on.

• Kaha and ZeroMQ: For event-driven, real-9me messaging, the API Layer communicates
with the Messaging Layer using Kaha (for reliable event streaming) and ZeroMQ (for
low-latency communica9on). These protocols allow for high-throughput, fault-tolerant
messaging.

• PostgreSQL (Go Extensions): The API Layer interacts with the Database Layer through
Rust extensions for PostgreSQL, enabling efficient database access for tasks like pa9ent
record retrieval and 9me-series data management.

The API Layer follows the Separa;on of Concerns principle, decoupling the logic of handling
user interac9ons from business logic, and allowing for easier maintenance and scalability.

3.1.3 Graph

The Graph Layer (built in Rust) is responsible for business logic that requires complex
computa9on and data processing, such as graph traversal, FHIR integra9on, cryptography, and
vector search.

• Graph Opera;ons: This layer performs cri9cal opera9ons such as traversing pa9ent data,
managing rela9onships, and op9mizing queries on medical records.

• FHIR Integra;on: Handles FHIR (Fast Healthcare Interoperability Resources) data
exchange, ensuring compa9bility with healthcare data standards.

• Cryptography: Responsible for securing sensi9ve data, using robust cryptographic
algorithms to ensure data privacy and compliance (e.g., HIPAA).

• Vector Search: Implements vector search algorithms to enable advanced search
capabili9es, such as finding similar pa9ent profiles or medical condi9ons.

• PostgreSQL: Direct communica9on with the Database Layer via Rust extensions ensures
efficient and secure interac9ons with the database, especially for complex graph queries
and 9me-series data management.

This layer’s primary role is to encapsulate domain-specific logic, following DDD (Domain-Driven
Design) principles, and ensure that business rules and complex opera9ons are isolated from
other concerns.

3.1.4 Messaging

The Messaging (built in Rust) facilitates event-driven communica9on across different system
components. Built using Kaha, ZeroMQ, and gRPC, this layer handles real-9me messaging,
event streaming, and interac9ons between components like the Chat API Layer, Telemedicine
Layer, and API Layer.

• Kaha: Used for reliable, fault-tolerant event streaming between different components.
Kapa is ideal for processing high-throughput events like pa9ent updates and clinician
ac9ons in a distributed manner.

• ZeroMQ: Handles low-latency, high-performance messaging, par9cularly for real-9me
interac9ons, such as chat and video session updates.

• gRPC: Provides high-performance communica9on for service-to-service interac9ons,
including session updates and backend communica9ons.

The Messaging ensures that all components are loosely coupled, following the DRY (Don’t
Repeat Yourself) principle by allowing efficient asynchronous communica9on without direct
dependencies between services.

3.1.5 Chat API

The Chat API (Rust) is dedicated to real-9me messaging and mul9media support.

• WebSocket: Connects with the Frontend for real-9me communica9on, ensuring low-
latency delivery of messages and mul9media.

• ZeroMQ: Facilitates interac9on with Messaging for event-driven updates and message
queuing.

• gRPC: Communicates with Security and Auth for authen9ca9on and session valida9on.
By isola9ng chat func9onali9es, the Chat API ensures efficient and focused handling of
messaging requirements.

3.1.6 Telemedicine

The Telemedicine Service is responsible for managing video calls, session management, and
communica9on between clinicians and pa9ents. Built using Rust and ZeroMQ, this layer
supports real-9me video interac9ons.

• ZeroMQ: Provides the core messaging backbone for video calls and session updates,
ensuring low-latency communica9on.

• gRPC: Handles session management and updates, ensuring efficient, reliable
communica9on for telemedicine interac9ons.

This focused service architecture ensures seamless real-9me communica9on with minimal
latency.

3.1.7 Security and Auth

The Security and Auth service (Rust) handles authen9ca9on, authoriza9on, and security
features across the applica9on.

• gRPC: Interacts with Messaging for security events and updates. It connects with Chat
API to validate session informa9on for real-9me messaging.

3.1.8 Project Layout

3.1.8 High Level Architecture Diagram:

3.1.9 Database

The Database (PostgreSQL) is a founda9onal component, suppor9ng advanced features and
performing backend tasks efficiently through a suite of ac9vated extensions. These extensions
significantly enhance the capabili9es of the database, enabling it to manage complex queries,
high-throughput data processing, and advanced data analy9cs.

Ac;vated PostgreSQL Extensions

1. hstore (1.8):

◦ Provides a data type for storing sets of key-value pairs.
◦ Useful for scenarios requiring flexible schemas or metadata storage, such as

tracking custom amributes in healthcare data.
2. pg_partman (4.0.0):

◦ Manages par99oned tables based on 9me or IDs.

◦ Enhances scalability and performance for large datasets, such as system logs,
pa9ent health metrics, or telemetry data.

3. pg_stat_statements (1.11):

◦ Tracks planning and execu9on sta9s9cs for all SQL statements.
◦ Facilitates performance monitoring and query op9miza9on as part of the

observability strategy.
4. pg_trgm (1.6):

◦ Enables text similarity measurement and index-based searching using trigrams.
◦ Powers fuzzy searches and efficient matching in text-heavy datasets, such as

clinician notes or pa9ent records.
5. pgcrypto (1.3):

◦ Provides cryptographic func9ons.
◦ Ensures secure handling of sensi9ve data, such as encryp9ng pa9ent informa9on

or secure token genera9on.
6. plpgsql (1.0):

◦ Enables procedural programming within the database.
◦ Used for crea9ng stored procedures, triggers, and custom logic for complex

workflows.
7. postgres_fdw (1.1):

◦ A foreign-data wrapper for connec9ng to remote PostgreSQL servers.
◦ Supports distributed queries and federated data access across systems.

8. ;mescaledb (2.17.2):

◦ Extends PostgreSQL for scalable 9me-series data handling.
◦ Cri9cal for managing telemetry, IoT data, and real-9me health metrics efficiently.

9. vector (0.8.0):

◦ Introduces a vector data type and ivfflat/hnsw access methods.
◦ Supports similarity searches and machine learning workflows, essen9al for

embedding-based data retrieval and analy9cs.

Integra;on and Usage

• Backend services, located in services/backend, leverage these extensions extensively.
Key examples:
◦ Graph (services/backend/graph) u9lizes pg_trgm and vector for

recommenda9on systems and efficient text matching.

◦ Messaging (services/backend/messaging) employs 9mescaledb for processing
real-9me event streams and IoT data.

◦ Directory Service (services/backend/directory-service) uses pgcrypto for
secure authen9ca9on workflows.

• The observability stack integrates with Prometheus to monitor database health and
query performance.

3.1.10 Monitoring and Observability

Monitoring services provide observability into the system's health and performance, leveraging
Prometheus configura9ons and metrics.

• The database integrates with Prometheus to provide real-9me insights into query
execu9on, table performance, and extension usage. These metrics are visualized through
Grafana dashboards.

• Extensions like pg_stat_statements enable detailed analysis and tuning of slow queries,
enhancing overall system performance.

• Prometheus: Collects and aggregates metrics from all backend services, located within
services/backend.

Appendix

Glossary of Terms

1. Master Pa;ent Index (MPI)

A database that contains a unique iden9fier for every pa9ent within a healthcare system. It ensures
that pa9ent records across different systems are linked correctly and helps eliminate duplicate
entries.

• Learn more: Master Pa9ent Index (Wikipedia)
2. Meaningful Use

A set of standards defined by the U.S. government to ensure that healthcare providers use
electronic health records (EHRs) to improve pa9ent care. Achieving meaningful use is 9ed to
financial incen9ves under the HITECH Act.

• Learn more: Meaningful Use (Wikipedia)
3. Pa;ent Journey

The complete experience of a pa9ent as they navigate through healthcare services, including
preventa9ve care, diagnosis, treatment, and follow-up. It is used to improve care coordina9on and
pa9ent outcomes.

• Learn more: Pa9ent Journey (Wikipedia)
4. Telemedicine

The prac9ce of providing healthcare remotely through technology, such as video calls or mobile
applica9ons, allowing pa9ents to consult with doctors or other healthcare professionals without
being physically present.

• Learn more: Telemedicine (Wikipedia)
5. Medical Code

A systema9c code used to represent medical diagnoses, treatments, and procedures. Common
coding systems include ICD-10 (Interna9onal Classifica9on of Diseases), CPT (Current Procedural
Terminology), and SNOMED CT.

• Learn more: Medical Coding (Wikipedia)

https://en.wikipedia.org/wiki/Master_patient_index
https://en.wikipedia.org/wiki/Meaningful_use
https://en.wikipedia.org/wiki/Patient_journey
https://en.wikipedia.org/wiki/Telemedicine
https://en.wikipedia.org/wiki/Medical_coding

6. Observability

The ability to monitor and understand the internal state of a system based on the data it produces,
such as logs, metrics, and traces. Observability tools help detect, diagnose, and resolve issues in
real-9me.

• Learn more: Observability (Wikipedia)
7. CI/CD (Con;nuous Integra;on / Con;nuous Deployment)

CI/CD refers to a set of prac9ces and tools that automate the integra9on and deployment of code
changes to improve sojware delivery processes. Con9nuous integra9on involves frequently merging
code changes, while con9nuous deployment automa9cally pushes code to produc9on.

• Learn more: CI/CD (Wikipedia)
8. ZeroMQ

A high-performance messaging library that enables communica9on between distributed
applica9ons. It provides various messaging pamerns, such as publish/subscribe and request/reply,
and is designed for scalability and efficiency.

• Learn more: ZeroMQ (Official Website)
9. Kaha

A distributed event streaming pla?orm that allows for the processing of high-throughput, low-
latency data feeds. Kapa is ojen used for building real-9me data pipelines and stream processing
applica9ons.

• Learn more: Kapa (Official Website)
10. Zookeeper

An open-source distributed coordina9on service for managing configura9on informa9on,
synchroniza9on, and naming in distributed systems. It is commonly used to manage large-scale
distributed applica9ons.

• Learn more: Zookeeper (Wikipedia)

11. Rust

https://en.wikipedia.org/wiki/Observability
https://en.wikipedia.org/wiki/Continuous_integration
https://zeromq.org/
https://kafka.apache.org/
https://en.wikipedia.org/wiki/Apache_Zookeeper

A systems programming language focused on performance, memory safety, and concurrency. It is
ojen used for building high-performance, safe applica9ons and is increasingly popular in backend
development.

• Learn more: Rust (Official Website)

12. Go (Golang)

A sta9cally typed programming language developed by Google, designed for simplicity and
efficiency, with features like concurrency built into the language. It is widely used for backend
services, microservices, and cloud applica9ons.

• Learn more: Go (Official Website)

13. JavaScript

A high-level, dynamic programming language primarily used for crea9ng interac9ve effects within
web browsers. It is a core technology for frontend development and can be used for backend
services with Node.js.

• Learn more: JavaScript (Wikipedia)

14. D3.js (Data-Driven Documents)

A JavaScript library for producing dynamic, interac9ve data visualiza9ons on the web. It uses HTML,
SVG, and CSS to manipulate documents based on data, commonly used for crea9ng complex
visualiza9ons like charts and graphs.

• Learn more: D3.js (Official Website)

15. Angular

A TypeScript-based open-source framework for building dynamic, single-page web applica9ons. It
provides a comprehensive suite of tools and libraries for frontend development, including
dependency injec9on, rou9ng, and data binding.

• Learn more: Angular (Official Website)

https://www.rust-lang.org/
https://golang.org/
https://en.wikipedia.org/wiki/JavaScript
https://d3js.org/
https://angular.io/

16. API (Applica;on Programming Interface)

A set of protocols, rou9nes, and tools that allow different sojware applica9ons to communicate
with each other. APIs define the methods and data formats that developers use to interact with a
service.

• Learn more: API (Wikipedia)
17. Backend

The server-side components of an applica9on that handle data processing, business logic, and
database management. The backend typically provides APIs for frontend applica9ons to interact
with.

• Learn more: Backend (Wikipedia)

18. Frontend

The client-side part of a web applica9on that interacts directly with the user. It includes everything
the user experiences on their device, such as the layout, design, and func9onality, typically
developed with HTML, CSS, and JavaScript.

• Learn more: Frontend (Wikipedia)

19. Graph Databases

A type of NoSQL database that uses graph structures to store data. These databases excel at
represen9ng complex rela9onships between data points, which is ideal for use cases such as social
networks, recommenda9on engines, and fraud detec9on.

• Learn more: Graph Database (Wikipedia)

20. PostgreSQL Extensions

• hstore: A data type for storing sets of key-value pairs in PostgreSQL. It allows users to store
semi-structured data without defining a schema.

◦ Learn more: hstore (PostgreSQL Official)
• pg_partman: An extension for managing par99oned tables by 9me or ID. It simplifies

par99on management by automa9ng par99on crea9on and maintenance.

◦ Learn more: pg_partman (Official Website)

https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Backend
https://en.wikipedia.org/wiki/Frontend
https://en.wikipedia.org/wiki/Graph_database
https://www.postgresql.org/docs/current/hstore.html
https://github.com/pgpartman/pg_partman

• pg_stat_statements: This extension tracks planning and execu9on sta9s9cs of all SQL
statements executed. It is useful for iden9fying slow queries and op9mizing performance.

◦ Learn more: pg_stat_statements (Official Website)
• pg_trgm: A PostgreSQL extension that supports text similarity measurements and index

searching based on trigrams. It is commonly used for fuzzy string matching.

◦ Learn more: pg_trgm (PostgreSQL Official)
• pgcrypto: Provides cryptographic func9ons, including encryp9on and decryp9on, hashing,

and random number genera9on. It allows for secure storage of sensi9ve data.

◦ Learn more: pgcrypto (PostgreSQL Official)
• plpgsql: A procedural language used for wri9ng func9ons and triggers in PostgreSQL. It

extends SQL to allow for complex logic and control structures.

◦ Learn more: plpgsql (PostgreSQL Official)
• postgres_fdw: A foreign data wrapper for remote PostgreSQL servers, enabling users to

query tables from other PostgreSQL databases as if they were local.

◦ Learn more: postgres_fdw (PostgreSQL Official)
• ;mescaledb: An extension that enables scalable inserts and complex queries for 9me-series

data. It op9mizes PostgreSQL for storing and analyzing 9me-series data.

◦ Learn more: TimescaleDB (Official Website)
• vector: Adds a vector data type and access methods (IVFFlat, HNSW) to PostgreSQL,

enabling fast similarity searches on high-dimensional data, such as machine learning
embeddings.

◦ Learn more: vector (Official Website)

21. HIPAA (Health Insurance Portability and Accountability Act)

A U.S. law that sets standards for the protec9on of health informa9on, ensuring pa9ent data
confiden9ality and privacy in healthcare senngs.

• Learn more: HIPAA (Wikipedia)
22. SOC 2 (System and Organiza;on Controls)

A set of standards for managing customer data based on five principles: security, availability,
processing integrity, confiden9ality, and privacy. It is commonly used for evalua9ng SaaS companies
and cloud-based service providers.

• Learn more: SOC 2 (Wikipedia)

https://www.postgresql.org/docs/current/pgstatstatements.html
https://www.postgresql.org/docs/current/pgtrgm.html
https://www.postgresql.org/docs/current/pgcrypto.html
https://www.postgresql.org/docs/current/plpgsql.html
https://www.postgresql.org/docs/current/postgres-fdw.html
https://www.timescale.com/
https://pgvector.org/
https://en.wikipedia.org/wiki/HIPAA
https://en.wikipedia.org/wiki/SOC_2

